Spaces:
Sleeping
Sleeping
File size: 13,271 Bytes
ec9a6bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
import numpy as np
import numpy.linalg as npla
import cv2
landmarks_2D_new = np.array([
[ 0.000213256, 0.106454 ], #17
[ 0.0752622, 0.038915 ], #18
[ 0.18113, 0.0187482 ], #19
[ 0.29077, 0.0344891 ], #20
[ 0.393397, 0.0773906 ], #21
[ 0.586856, 0.0773906 ], #22
[ 0.689483, 0.0344891 ], #23
[ 0.799124, 0.0187482 ], #24
[ 0.904991, 0.038915 ], #25
[ 0.98004, 0.106454 ], #26
[ 0.490127, 0.203352 ], #27
[ 0.490127, 0.307009 ], #28
[ 0.490127, 0.409805 ], #29
[ 0.490127, 0.515625 ], #30
[ 0.36688, 0.587326 ], #31
[ 0.426036, 0.609345 ], #32
[ 0.490127, 0.628106 ], #33
[ 0.554217, 0.609345 ], #34
[ 0.613373, 0.587326 ], #35
[ 0.121737, 0.216423 ], #36
[ 0.187122, 0.178758 ], #37
[ 0.265825, 0.179852 ], #38
[ 0.334606, 0.231733 ], #39
[ 0.260918, 0.245099 ], #40
[ 0.182743, 0.244077 ], #41
[ 0.645647, 0.231733 ], #42
[ 0.714428, 0.179852 ], #43
[ 0.793132, 0.178758 ], #44
[ 0.858516, 0.216423 ], #45
[ 0.79751, 0.244077 ], #46
[ 0.719335, 0.245099 ], #47
[ 0.254149, 0.780233 ], #48
[ 0.726104, 0.780233 ], #54
], dtype=np.float32
)
landmarks_2D_new = (landmarks_2D_new - 0.5) * 0.8 + 0.5
def get_transform_mat(landmarks, output_size=128):
if not isinstance(landmarks, np.ndarray):
landmarks = np.array(landmarks)
# estimate landmarks transform from global space to local aligned space with bounds [0..1]
mat = umeyama(np.concatenate([landmarks[17:49] , landmarks[54:55] ]), landmarks_2D_new, True)[0:2]
# get corner points in global space
g_p = transform_points(np.float32([(0,0),(1,0),(1,1),(0,1),(0.5,0.5) ]), mat, True)
g_c = g_p[4]
# calc diagonal vectors between corners in global space
tb_diag_vec = (g_p[2]-g_p[0]).astype(np.float32)
tb_diag_vec /= npla.norm(tb_diag_vec)
bt_diag_vec = (g_p[1]-g_p[3]).astype(np.float32)
bt_diag_vec /= npla.norm(bt_diag_vec)
# calc modifier of diagonal vectors for scale and padding value
mod = npla.norm(g_p[0]-g_p[2])*(0.4*np.sqrt(2.0) + 0.5)
# adjust vertical offset for WHOLE_FACE, 20% below in order to cover more forehead
vec = (g_p[0]-g_p[3]).astype(np.float32)
vec_len = npla.norm(vec)
vec /= vec_len
g_c += vec*vec_len*0.2
# calc 3 points in global space to estimate 2d affine transform
l_t = np.array( [ g_c - tb_diag_vec*mod,
g_c + bt_diag_vec*mod,
g_c + tb_diag_vec*mod ] )
# calc affine transform from 3 global space points to 3 local space points size of 'output_size'
pts2 = np.float32(( (0,0),(output_size,0),(output_size,output_size) ))
mat = cv2.getAffineTransform(l_t,pts2)
return mat
def transform_points(points, mat, invert=False):
if invert:
mat = cv2.invertAffineTransform (mat)
points = np.expand_dims(points, axis=1)
points = cv2.transform(points, mat, points.shape)
points = np.squeeze(points)
return points
def get_image_hull_mask(image_shape, landmarks):
hull_mask = np.zeros(image_shape[0:2]+(1,),dtype=np.float32)
lmrks = expand_eyebrows(landmarks, 1.0)
r_jaw = (lmrks[0:9], lmrks[17:18])
l_jaw = (lmrks[8:17], lmrks[26:27])
r_cheek = (lmrks[17:20], lmrks[8:9])
l_cheek = (lmrks[24:27], lmrks[8:9])
nose_ridge = (lmrks[19:25], lmrks[8:9],)
r_eye = (lmrks[17:22], lmrks[27:28], lmrks[31:36], lmrks[8:9])
l_eye = (lmrks[22:27], lmrks[27:28], lmrks[31:36], lmrks[8:9])
nose = (lmrks[27:31], lmrks[31:36])
parts = [r_jaw, l_jaw, r_cheek, l_cheek, nose_ridge, r_eye, l_eye, nose]
for item in parts:
merged = np.concatenate(item)
cv2.fillConvexPoly(hull_mask, cv2.convexHull(merged), (1,) )
return hull_mask
def expand_eyebrows(lmrks, eyebrows_expand_mod=1.0):
lmrks = np.array( lmrks.copy(), dtype=np.int )
# #nose
ml_pnt = (lmrks[36] + lmrks[0]) // 2
mr_pnt = (lmrks[16] + lmrks[45]) // 2
# mid points between the mid points and eye
ql_pnt = (lmrks[36] + ml_pnt) // 2
qr_pnt = (lmrks[45] + mr_pnt) // 2
# Top of the eye arrays
bot_l = np.array((ql_pnt, lmrks[36], lmrks[37], lmrks[38], lmrks[39]))
bot_r = np.array((lmrks[42], lmrks[43], lmrks[44], lmrks[45], qr_pnt))
# Eyebrow arrays
top_l = lmrks[17:22]
top_r = lmrks[22:27]
# Adjust eyebrow arrays
lmrks[17:22] = top_l + eyebrows_expand_mod * 0.5 * (top_l - bot_l)
lmrks[22:27] = top_r + eyebrows_expand_mod * 0.5 * (top_r - bot_r)
return lmrks
def process_face_det_results(face_det_results):
"""Process det results, and return a list of bboxes.
:param face_det_results: (top, right, bottom and left)
:return: a list of detected bounding boxes (x,y,x,y)-format
"""
person_results = []
for bbox in face_det_results:
bbox = bbox[0]
person = {}
# left, top, right, bottom
person['bbox'] = [bbox[3], bbox[0], bbox[1], bbox[2]]
person_results.append(person)
return person_results
def area_of(left_top, right_bottom):
"""Compute the areas of rectangles given two corners.
Args:
left_top (N, 2): left top corner.
right_bottom (N, 2): right bottom corner.
Returns:
area (N): return the area.
"""
hw = np.clip(right_bottom - left_top, 0.0, None)
return hw[..., 0] * hw[..., 1]
def iou_of(boxes0, boxes1, eps=1e-5):
"""Return intersection-over-union (Jaccard index) of boxes.
Args:
boxes0 (N, 4): ground truth boxes.
boxes1 (N or 1, 4): predicted boxes.
eps: a small number to avoid 0 as denominator.
Returns:
iou (N): IoU values.
"""
overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2])
overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:])
overlap_area = area_of(overlap_left_top, overlap_right_bottom)
area0 = area_of(boxes0[..., :2], boxes0[..., 2:])
area1 = area_of(boxes1[..., :2], boxes1[..., 2:])
return overlap_area / (area0 + area1 - overlap_area + eps)
def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200):
"""
Args:
box_scores (N, 5): boxes in corner-form and probabilities.
iou_threshold: intersection over union threshold.
top_k: keep top_k results. If k <= 0, keep all the results.
candidate_size: only consider the candidates with the highest scores.
Returns:
picked: a list of indexes of the kept boxes
"""
scores = box_scores[:, -1]
boxes = box_scores[:, :-1]
picked = []
# _, indexes = scores.sort(descending=True)
indexes = np.argsort(scores)
# indexes = indexes[:candidate_size]
indexes = indexes[-candidate_size:]
while len(indexes) > 0:
# current = indexes[0]
current = indexes[-1]
picked.append(current)
if 0 < top_k == len(picked) or len(indexes) == 1:
break
current_box = boxes[current, :]
# indexes = indexes[1:]
indexes = indexes[:-1]
rest_boxes = boxes[indexes, :]
iou = iou_of(
rest_boxes,
np.expand_dims(current_box, axis=0),
)
indexes = indexes[iou <= iou_threshold]
return box_scores[picked, :]
def predict_box(width, height, confidences, boxes, prob_threshold, iou_threshold=0.3, top_k=-1):
boxes = boxes[0]
confidences = confidences[0]
picked_box_probs = []
picked_labels = []
for class_index in range(1, confidences.shape[1]):
probs = confidences[:, class_index]
mask = probs > prob_threshold
probs = probs[mask]
if probs.shape[0] == 0:
continue
subset_boxes = boxes[mask, :]
box_probs = np.concatenate([subset_boxes, probs.reshape(-1, 1)], axis=1)
box_probs = hard_nms(box_probs, iou_threshold=iou_threshold, top_k=top_k)
picked_box_probs.append(box_probs)
picked_labels.extend([class_index] * box_probs.shape[0])
if not picked_box_probs:
return np.array([]), np.array([]), np.array([])
picked_box_probs = np.concatenate(picked_box_probs)
picked_box_probs[:, 0] *= width
picked_box_probs[:, 1] *= height
picked_box_probs[:, 2] *= width
picked_box_probs[:, 3] *= height
return picked_box_probs[:, :4].astype(np.int32), np.array(picked_labels), picked_box_probs[:, 4]
class BBox(object):
# bbox is a list of [left, right, top, bottom]
def __init__(self, bbox):
self.left = bbox[0]
self.right = bbox[1]
self.top = bbox[2]
self.bottom = bbox[3]
self.x = bbox[0]
self.y = bbox[2]
self.w = bbox[1] - bbox[0]
self.h = bbox[3] - bbox[2]
# scale to [0,1]
def projectLandmark(self, landmark):
landmark_= np.asarray(np.zeros(landmark.shape))
for i, point in enumerate(landmark):
landmark_[i] = ((point[0]-self.x)/self.w, (point[1]-self.y)/self.h)
return landmark_
# landmark of (5L, 2L) from [0,1] to real range
def reprojectLandmark(self, landmark):
landmark_= np.asarray(np.zeros(landmark.shape))
for i, point in enumerate(landmark):
x = point[0] * self.w + self.x
y = point[1] * self.h + self.y
landmark_[i] = (x, y)
return landmark_
def umeyama(src, dst, estimate_scale):
"""Estimate N-D similarity transformation with or without scaling.
Parameters
----------
src : (M, N) array
Source coordinates.
dst : (M, N) array
Destination coordinates.
estimate_scale : bool
Whether to estimate scaling factor.
Returns
-------
T : (N + 1, N + 1)
The homogeneous similarity transformation matrix. The matrix contains
NaN values only if the problem is not well-conditioned.
References
----------
.. [1] "Least-squares estimation of transformation parameters between two
point patterns", Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573
"""
num = src.shape[0]
dim = src.shape[1]
# Compute mean of src and dst.
src_mean = src.mean(axis=0)
dst_mean = dst.mean(axis=0)
# Subtract mean from src and dst.
src_demean = src - src_mean
dst_demean = dst - dst_mean
# Eq. (38).
A = np.dot(dst_demean.T, src_demean) / num
# Eq. (39).
d = np.ones((dim,), dtype=np.double)
if np.linalg.det(A) < 0:
d[dim - 1] = -1
T = np.eye(dim + 1, dtype=np.double)
U, S, V = np.linalg.svd(A)
# Eq. (40) and (43).
rank = np.linalg.matrix_rank(A)
if rank == 0:
return np.nan * T
elif rank == dim - 1:
if np.linalg.det(U) * np.linalg.det(V) > 0:
T[:dim, :dim] = np.dot(U, V)
else:
s = d[dim - 1]
d[dim - 1] = -1
T[:dim, :dim] = np.dot(U, np.dot(np.diag(d), V))
d[dim - 1] = s
else:
T[:dim, :dim] = np.dot(U, np.dot(np.diag(d), V))
if estimate_scale:
# Eq. (41) and (42).
scale = 1.0 / src_demean.var(axis=0).sum() * np.dot(S, d)
else:
scale = 1.0
T[:dim, dim] = dst_mean - scale * np.dot(T[:dim, :dim], src_mean.T)
T[:dim, :dim] *= scale
return T
def xyxy2xywh(bbox_xyxy):
"""Transform the bbox format from x1y1x2y2 to xywh.
Args:
bbox_xyxy (np.ndarray): Bounding boxes (with scores), shaped (n, 4) or
(n, 5). (left, top, right, bottom, [score])
Returns:
np.ndarray: Bounding boxes (with scores),
shaped (n, 4) or (n, 5). (left, top, width, height, [score])
"""
bbox_xywh = bbox_xyxy.copy()
bbox_xywh[:, 2] = bbox_xywh[:, 2] - bbox_xywh[:, 0] + 1
bbox_xywh[:, 3] = bbox_xywh[:, 3] - bbox_xywh[:, 1] + 1
return bbox_xywh
def xywh2xyxy(bbox_xywh):
"""Transform the bbox format from xywh to x1y1x2y2.
Args:
bbox_xywh (ndarray): Bounding boxes (with scores),
shaped (n, 4) or (n, 5). (left, top, width, height, [score])
Returns:
np.ndarray: Bounding boxes (with scores), shaped (n, 4) or
(n, 5). (left, top, right, bottom, [score])
"""
bbox_xyxy = bbox_xywh.copy()
bbox_xyxy[:, 2] = bbox_xyxy[:, 2] + bbox_xyxy[:, 0] - 1
bbox_xyxy[:, 3] = bbox_xyxy[:, 3] + bbox_xyxy[:, 1] - 1
return bbox_xyxy
def box2cs(cfg, box):
"""This encodes bbox(x,y,w,h) into (center, scale)
Args:
x, y, w, h
Returns:
tuple: A tuple containing center and scale.
- np.ndarray[float32](2,): Center of the bbox (x, y).
- np.ndarray[float32](2,): Scale of the bbox w & h.
"""
x, y, w, h = box[:4]
input_size = cfg.data_cfg['image_size']
aspect_ratio = input_size[0] / input_size[1]
center = np.array([x + w * 0.5, y + h * 0.5], dtype=np.float32)
if w > aspect_ratio * h:
h = w * 1.0 / aspect_ratio
elif w < aspect_ratio * h:
w = h * aspect_ratio
# pixel std is 200.0
scale = np.array([w / 200.0, h / 200.0], dtype=np.float32)
scale = scale * 1.25
return center, scale |