Spaces:
Sleeping
Sleeping
File size: 9,027 Bytes
ec9a6bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import os
from yacs.config import CfgNode as CN
class config_base():
def __init__(self):
self.cfg = CN()
def get_cfg(self):
return self.cfg.clone()
def load(self,config_file):
self.cfg.defrost()
self.cfg.merge_from_file(config_file)
def freeze(self):
self.cfg.freeze()
class config_train(config_base):
def __init__(self):
super(config_train, self).__init__()
self.cfg.gpu_id = 0 # which gpu is used
self.cfg.load_meshhead_checkpoint = '' # checkpoint path of mesh head
self.cfg.load_gaussianhead_checkpoint = '' # checkpoint path of gaussian head
self.cfg.load_supres_checkpoint = '' # checkpoint path of super resolution network
self.cfg.load_delta_poses_checkpoint = '' # checkpoint path of per-frame offset of head pose
self.cfg.lr_net = 0.0 # learning rate for models and networks
self.cfg.lr_lmk = 0.0 # learning rate for 3D landmarks
self.cfg.lr_pose = 0.0 # learning rate for delta_poses
self.cfg.batch_size = 1 # recommend batch_size = 1
self.cfg.optimize_pose = False # optimize delta_poses or not
self.cfg.dataset = CN()
self.cfg.dataset.dataroot = '' # root of the dataset
self.cfg.dataset.camera_ids = [] # which cameras are used
self.cfg.dataset.original_resolution = 2048 # original image resolution, should match the intrinsic
self.cfg.dataset.resolution = 512 # image resolution for rendering
self.cfg.dataset.num_sample_view = 8 # number of sampled images from different views during mesh head training
self.cfg.meshheadmodule = CN()
self.cfg.meshheadmodule.geo_mlp = [] # dimensions of geometry MLP
self.cfg.meshheadmodule.exp_color_mlp = [] # dimensions of expression color MLP
self.cfg.meshheadmodule.pose_color_mlp = [] # dimensions of pose color MLP
self.cfg.meshheadmodule.exp_deform_mlp = [] # dimensions of expression deformation MLP
self.cfg.meshheadmodule.pose_deform_mlp = [] # dimensions of pose deformation MLP
self.cfg.meshheadmodule.pos_freq = 4 # frequency of positional encoding
self.cfg.meshheadmodule.model_bbox = [] # bounding box of the head model
self.cfg.meshheadmodule.dist_threshold_near = 0.1 # threshold t1
self.cfg.meshheadmodule.dist_threshold_far = 0.2 # thresgold t2
self.cfg.meshheadmodule.deform_scale = 0.3 # scale factor for deformation
self.cfg.meshheadmodule.subdivide = False # subdivide the tetmesh (resolution: 128 --> 256) or not
self.cfg.supresmodule = CN()
self.cfg.supresmodule.input_dim = 32 # input dim, equal to the channel number of the multi-channel color
self.cfg.supresmodule.output_dim = 3 # output dim, euqal to the channel number of the final image
self.cfg.supresmodule.network_capacity = 64 # dimension of the network's last conv layer
self.cfg.gaussianheadmodule = CN()
self.cfg.gaussianheadmodule.num_add_mouth_points = 0 # number of the points added around mouth landmarks while initialization
self.cfg.gaussianheadmodule.exp_color_mlp = [] # dimensions of expression color MLP
self.cfg.gaussianheadmodule.pose_color_mlp = [] # dimensions of pose color MLP
self.cfg.gaussianheadmodule.exp_attributes_mlp = [] # dimensions of expression attribute MLP
self.cfg.gaussianheadmodule.pose_attributes_mlp = [] # dimensions of pose attribute MLP
self.cfg.gaussianheadmodule.exp_deform_mlp = [] # dimensions of expression deformation MLP
self.cfg.gaussianheadmodule.pose_deform_mlp = [] # dimensions of pose deformation MLP
self.cfg.gaussianheadmodule.exp_coeffs_dim = 64 # dimension of the expression coefficients
self.cfg.gaussianheadmodule.pos_freq = 4 # frequency of positional encoding
self.cfg.gaussianheadmodule.dist_threshold_near = 0.1 # threshold t1
self.cfg.gaussianheadmodule.dist_threshold_far = 0.2 # thresgold t2
self.cfg.gaussianheadmodule.deform_scale = 0.3 # scale factor for deformation
self.cfg.gaussianheadmodule.attributes_scale = 0.05 # scale factor for attribute offset
self.cfg.recorder = CN()
self.cfg.recorder.name = '' # name of the avatar
self.cfg.recorder.logdir = '' # directory of the tensorboard log
self.cfg.recorder.checkpoint_path = '' # path to the saved checkpoints
self.cfg.recorder.result_path = '' # path to the visualization results
self.cfg.recorder.save_freq = 1 # how often the checkpoints are saved
self.cfg.recorder.show_freq = 1 # how often the visualization results are saved
class config_reenactment(config_base):
def __init__(self):
super(config_reenactment, self).__init__()
self.cfg.gpu_id = 0 # which gpu is used
self.cfg.load_gaussianhead_checkpoint = '' # checkpoint path of gaussian head
self.cfg.load_supres_checkpoint = '' # checkpoint path of super resolution network
self.cfg.dataset = CN()
self.cfg.dataset.dataroot = '' # root of the dataset
self.cfg.dataset.image_files = '' # file names of input images
self.cfg.dataset.param_files = '' # file names of BFM parameters (head pose and expression coefficients)
self.cfg.dataset.camera_path = '' # path of a specific camera
self.cfg.dataset.pose_code_path = '' # path of a specific pose code (as network input)
self.cfg.dataset.exp_path = '' # path of a specific expression code (as network input)
self.cfg.dataset.freeview = False # freeview rendering or using the specific camera
self.cfg.dataset.original_resolution = 2048 # original image resolution, should match the intrinsic
self.cfg.dataset.resolution = 512 # image resolution for rendering
self.cfg.supresmodule = CN()
self.cfg.supresmodule.input_dim = 32 # input dim, equal to the channel number of the multi-channel color
self.cfg.supresmodule.output_dim = 3 # output dim, euqal to the channel number of the final image
self.cfg.supresmodule.network_capacity = 64 # dimension of the network's last conv layer
self.cfg.gaussianheadmodule = CN()
self.cfg.gaussianheadmodule.num_add_mouth_points = 0 # number of the points added around mouth landmarks while initialization
self.cfg.gaussianheadmodule.exp_color_mlp = [] # dimensions of expression color MLP
self.cfg.gaussianheadmodule.pose_color_mlp = [] # dimensions of pose color MLP
self.cfg.gaussianheadmodule.exp_attributes_mlp = [] # dimensions of expression attribute MLP
self.cfg.gaussianheadmodule.pose_attributes_mlp = [] # dimensions of pose attribute MLP
self.cfg.gaussianheadmodule.exp_deform_mlp = [] # dimensions of expression deformation MLP
self.cfg.gaussianheadmodule.pose_deform_mlp = [] # dimensions of pose deformation MLP
self.cfg.gaussianheadmodule.exp_coeffs_dim = 64 # dimension of the expression coefficients
self.cfg.gaussianheadmodule.pos_freq = 4 # frequency of positional encoding
self.cfg.gaussianheadmodule.dist_threshold_near = 0.1 # threshold t1
self.cfg.gaussianheadmodule.dist_threshold_far = 0.2 # thresgold t2
self.cfg.gaussianheadmodule.deform_scale = 0.3 # scale factor for deformation
self.cfg.gaussianheadmodule.attributes_scale = 0.05 # scale factor for attribute offset
self.cfg.recorder = CN()
self.cfg.recorder.name = '' # name of the avatar
self.cfg.recorder.result_path = '' # path to the visualization results |