File size: 7,265 Bytes
ec9a6bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
import numpy as np
import torch
import torch.nn.functional as F
import cv2 as cv
import trimesh
import yaml
import tqdm

import smplx
from network.volume import CanoBlendWeightVolume
from utils.renderer import Renderer
import config
os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1"

def save_pos_map(pos_map, path):
    mask = np.linalg.norm(pos_map, axis = -1) > 0.
    positions = pos_map[mask]
    print('Point nums %d' % positions.shape[0])
    pc = trimesh.PointCloud(positions)
    pc.export(path)


def interpolate_lbs(pts, vertices, faces, vertex_lbs):
    from utils.posevocab_custom_ops.nearest_face import nearest_face_pytorch3d
    from utils.geo_util import barycentric_interpolate
    dists, indices, bc_coords = nearest_face_pytorch3d(
        torch.from_numpy(pts).to(torch.float32).cuda()[None],
        torch.from_numpy(vertices).to(torch.float32).cuda()[None],
        torch.from_numpy(faces).to(torch.int64).cuda()
    )
    # print(dists.mean())
    lbs = barycentric_interpolate(
        vert_attris = vertex_lbs[None].to(torch.float32).cuda(),
        faces = torch.from_numpy(faces).to(torch.int64).cuda()[None],
        face_ids = indices,
        bc_coords = bc_coords
    )
    return lbs[0].cpu().numpy()


map_size = 1024


if __name__ == '__main__':
    from argparse import ArgumentParser
    import importlib

    arg_parser = ArgumentParser()
    arg_parser.add_argument('-c', '--config_path', type = str, help = 'Configuration file path.')
    args = arg_parser.parse_args()

    opt = yaml.load(open(args.config_path, encoding = 'UTF-8'), Loader = yaml.FullLoader)
    dataset_module = opt['train'].get('dataset', 'MvRgbDatasetAvatarReX')
    MvRgbDataset = importlib.import_module('dataset.dataset_mv_rgb').__getattribute__(dataset_module)
    dataset = MvRgbDataset(**opt['train']['data'])
    data_dir, frame_list = dataset.data_dir, dataset.pose_list

    os.makedirs(data_dir + '/smpl_pos_map', exist_ok = True)

    cano_renderer = Renderer(map_size, map_size, shader_name = 'vertex_attribute')

    smpl_model = smplx.SMPLX(config.PROJ_DIR + '/smpl_files/smplx', gender = 'neutral', use_pca = False, num_pca_comps = 45, flat_hand_mean = True, batch_size = 1)
    smpl_data = np.load(data_dir + '/smpl_params.npz')
    smpl_data = {k: torch.from_numpy(v.astype(np.float32)) for k, v in smpl_data.items()}

    with torch.no_grad():
        cano_smpl = smpl_model.forward(
            betas = smpl_data['betas'],
            global_orient = config.cano_smpl_global_orient[None],
            transl = config.cano_smpl_transl[None],
            body_pose = config.cano_smpl_body_pose[None]
        )
        cano_smpl_v = cano_smpl.vertices[0].cpu().numpy()
        cano_center = 0.5 * (cano_smpl_v.min(0) + cano_smpl_v.max(0))
        cano_smpl_v_min = cano_smpl_v.min()
        smpl_faces = smpl_model.faces.astype(np.int64)

    if os.path.exists(data_dir + '/template.ply'):
        print('# Loading template from %s' % (data_dir + '/template.ply'))
        template = trimesh.load(data_dir + '/template.ply', process = False)
        using_template = True
    else:
        print(f'# Cannot find template.ply from {data_dir}, using SMPL-X as template')
        template = trimesh.Trimesh(cano_smpl_v, smpl_faces, process = False)
        using_template = False

    cano_smpl_v = template.vertices.astype(np.float32)
    smpl_faces = template.faces.astype(np.int64)
    cano_smpl_v_dup = cano_smpl_v[smpl_faces.reshape(-1)]
    cano_smpl_n_dup = template.vertex_normals.astype(np.float32)[smpl_faces.reshape(-1)]

    # define front & back view matrices
    front_mv = np.identity(4, np.float32)
    front_mv[:3, 3] = -cano_center + np.array([0, 0, -10], np.float32)
    front_mv[1:3] *= -1

    back_mv = np.identity(4, np.float32)
    rot_y = cv.Rodrigues(np.array([0, np.pi, 0], np.float32))[0]
    back_mv[:3, :3] = rot_y
    back_mv[:3, 3] = -rot_y @ cano_center + np.array([0, 0, -10], np.float32)
    back_mv[1:3] *= -1

    # render canonical smpl position maps
    cano_renderer.set_model(cano_smpl_v_dup, cano_smpl_v_dup)
    cano_renderer.set_camera(front_mv)
    front_cano_pos_map = cano_renderer.render()[:, :, :3]

    cano_renderer.set_camera(back_mv)
    back_cano_pos_map = cano_renderer.render()[:, :, :3]
    back_cano_pos_map = cv.flip(back_cano_pos_map, 1)
    cano_pos_map = np.concatenate([front_cano_pos_map, back_cano_pos_map], 1)
    cv.imwrite(data_dir + '/smpl_pos_map/cano_smpl_pos_map.exr', cano_pos_map)

    # render canonical smpl normal maps
    cano_renderer.set_model(cano_smpl_v_dup, cano_smpl_n_dup)
    cano_renderer.set_camera(front_mv)
    front_cano_nml_map = cano_renderer.render()[:, :, :3]

    cano_renderer.set_camera(back_mv)
    back_cano_nml_map = cano_renderer.render()[:, :, :3]
    back_cano_nml_map = cv.flip(back_cano_nml_map, 1)
    cano_nml_map = np.concatenate([front_cano_nml_map, back_cano_nml_map], 1)
    cv.imwrite(data_dir + '/smpl_pos_map/cano_smpl_nml_map.exr', cano_nml_map)

    body_mask = np.linalg.norm(cano_pos_map, axis = -1) > 0.
    cano_pts = cano_pos_map[body_mask]
    if using_template:
        weight_volume = CanoBlendWeightVolume(data_dir + '/cano_weight_volume.npz')
        pts_lbs = weight_volume.forward_weight(torch.from_numpy(cano_pts)[None].cuda())[0]
    else:
        pts_lbs = interpolate_lbs(cano_pts, cano_smpl_v, smpl_faces, smpl_model.lbs_weights)
        pts_lbs = torch.from_numpy(pts_lbs).cuda()
    np.save(data_dir + '/smpl_pos_map/init_pts_lbs.npy', pts_lbs.cpu().numpy())

    inv_cano_smpl_A = torch.linalg.inv(cano_smpl.A).cuda()
    body_mask = torch.from_numpy(body_mask).cuda()
    cano_pts = torch.from_numpy(cano_pts).cuda()
    pts_lbs = pts_lbs.cuda()

    for pose_idx in tqdm.tqdm(frame_list, desc = 'Generating positional maps...'):
        with torch.no_grad():
            live_smpl_woRoot = smpl_model.forward(
                betas = smpl_data['betas'],
                # global_orient = smpl_data['global_orient'][pose_idx][None],
                # transl = smpl_data['transl'][pose_idx][None],
                body_pose = smpl_data['body_pose'][pose_idx][None],
                jaw_pose = smpl_data['jaw_pose'][pose_idx][None],
                expression = smpl_data['expression'][pose_idx][None],
                # left_hand_pose = smpl_data['left_hand_pose'][pose_idx][None],
                # right_hand_pose = smpl_data['right_hand_pose'][pose_idx][None]
            )

        cano2live_jnt_mats_woRoot = torch.matmul(live_smpl_woRoot.A.cuda(), inv_cano_smpl_A)[0]
        pt_mats = torch.einsum('nj,jxy->nxy', pts_lbs, cano2live_jnt_mats_woRoot)
        live_pts = torch.einsum('nxy,ny->nx', pt_mats[..., :3, :3], cano_pts) + pt_mats[..., :3, 3]
        live_pos_map = torch.zeros((map_size, 2 * map_size, 3)).to(live_pts)
        live_pos_map[body_mask] = live_pts
        live_pos_map = F.interpolate(live_pos_map.permute(2, 0, 1)[None], None, [0.5, 0.5], mode = 'nearest')[0]
        live_pos_map = live_pos_map.permute(1, 2, 0).cpu().numpy()

        cv.imwrite(data_dir + '/smpl_pos_map/%08d.exr' % pose_idx, live_pos_map)