Spaces:
Sleeping
Sleeping
File size: 9,782 Bytes
ec9a6bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import os
import platform
import time
import yaml
import torch
import datetime
from torch.utils.tensorboard import SummaryWriter
import torch.utils.data
import numpy as np
import glob
import shutil
from utils.net_util import to_cuda
def worker_init_fn(worker_id): # set numpy's random seed
seed = torch.initial_seed()
seed = seed % (2 ** 32)
np.random.seed(seed + worker_id)
class BaseTrainer:
def __init__(self, opt):
self.opt = opt
self.dataset = None
self.network = None
self.net_dict = {}
self.optm_dict = {}
self.update_keys = None
self.lr_schedule_dict = {}
self.iter_idx = 0
self.epoch_idx = 0
self.iter_num = 9999999999
self.loss_weight = self.opt['train']['loss_weight']
@staticmethod
def load_pretrained(path, dict_):
data = torch.load(path)
for k in dict_:
if k in data:
print('# Loading %s...' % k)
dict_[k].load_state_dict(data[k])
else:
print('# %s not found!' % k)
return data.get('epoch_idx', None)
def load_ckpt(self, path, load_optm = True):
epoch_idx = self.load_pretrained(path + '/net.pt', self.net_dict)
if load_optm:
if os.path.exists(path + '/optm.pt'):
self.load_pretrained(path + '/optm.pt', self.optm_dict)
else:
print('# Optimizer not found!')
return epoch_idx
# @staticmethod
def save_trained(self, path, dict_):
data = {}
for k in dict_:
data[k] = dict_[k].state_dict()
data.update({
'epoch_idx': self.epoch_idx,
})
torch.save(data, path)
def save_ckpt(self, path, save_optm = True):
self.save_trained(path + '/net.pt', self.net_dict)
if save_optm:
self.save_trained(path + '/optm.pt', self.optm_dict)
def zero_grad(self):
if self.update_keys is None:
update_keys = self.optm_dict.keys()
else:
update_keys = self.update_keys
for k in update_keys:
self.optm_dict[k].zero_grad()
def step(self):
if self.update_keys is None:
update_keys = self.optm_dict.keys()
else:
update_keys = self.update_keys
for k in update_keys:
self.optm_dict[k].step()
def update_lr(self, iter_idx):
lr_dict = {}
if self.update_keys is None:
update_keys = self.optm_dict.keys()
else:
update_keys = self.update_keys
for k in update_keys:
lr = self.lr_schedule_dict[k].get_learning_rate(iter_idx)
for param_group in self.optm_dict[k].param_groups:
param_group['lr'] = lr
lr_dict[k] = lr
return lr_dict
def set_dataset(self, dataset):
self.dataset = dataset
def set_network(self, network):
self.network = network
def set_net_dict(self, net_dict):
self.net_dict = net_dict
def set_optm_dict(self, optm_dict):
self.optm_dict = optm_dict
def set_update_keys(self, update_keys):
self.update_keys = update_keys
def set_lr_schedule_dict(self, lr_schedule_dict):
self.lr_schedule_dict = lr_schedule_dict
def set_train(self, flag = True):
if flag:
for k, net in self.net_dict.items():
if k in self.update_keys:
net.train()
else:
net.eval()
else:
for k, net in self.net_dict.items():
net.eval()
def train(self):
# log
os.makedirs(self.opt['train']['net_ckpt_dir'], exist_ok = True)
log_dir = self.opt['train']['net_ckpt_dir'] + '/' + datetime.datetime.now().strftime('%Y_%m_%d_%H_%M_%S')
os.makedirs(log_dir, exist_ok = True)
writer = SummaryWriter(log_dir)
yaml.dump(self.opt, open(log_dir + '/config_bk.yaml', 'w'), sort_keys = False)
self.set_train()
self.dataset.training = True
batch_size = self.opt['train'].get('batch_size', 1)
num_workers = self.opt['train'].get('num_workers', 0)
dataloader = torch.utils.data.DataLoader(self.dataset,
batch_size = batch_size,
shuffle = True,
num_workers = num_workers,
worker_init_fn = worker_init_fn,
drop_last = True)
self.batch_num = len(self.dataset) // batch_size
if self.opt['train'].get('save_init_ckpt', False) and self.opt['train'].get('start_epoch', 0) == 0:
init_folder = self.opt['train']['net_ckpt_dir'] + '/init_ckpt'
if not os.path.exists(init_folder) or self.opt['train']['start_epoch'] == 0:
os.makedirs(init_folder, exist_ok = True)
self.save_ckpt(init_folder, False)
else:
print('# Init checkpoint has been saved!')
if self.opt['train']['prev_ckpt'] is not None:
start_epoch = self.load_ckpt(self.opt['train']['prev_ckpt']) + 1
else:
prev_ckpt_path = self.opt['train']['net_ckpt_dir'] + '/epoch_latest'
if os.path.exists(prev_ckpt_path):
start_epoch = self.load_ckpt(prev_ckpt_path) + 1
else:
start_epoch = None
if start_epoch is None:
start_epoch = self.opt['train'].get('start_epoch', 0)
end_epoch = self.opt['train'].get('end_epoch', 999)
forward_one_pass = self.forward_one_pass
for epoch_idx in range(start_epoch, end_epoch):
self.epoch_idx = epoch_idx
self.update_config_before_epoch(epoch_idx)
epoch_losses = dict()
time0 = time.time()
for batch_idx, items in enumerate(dataloader):
iter_idx = batch_idx + self.batch_num * epoch_idx
self.iter_idx = iter_idx
lr_dict = self.update_lr(iter_idx)
items = to_cuda(items)
loss, batch_losses = forward_one_pass(items)
# self.zero_grad()
# loss.backward()
# self.step()
# record batch loss
log_info = 'epoch %d, batch %d, ' % (epoch_idx, batch_idx)
log_info += 'lr: '
for k in lr_dict.keys():
log_info += '%s %e, ' % (k, lr_dict[k])
for key in batch_losses.keys():
log_info = log_info + ('%s: %f, ' % (key, batch_losses[key]))
writer.add_scalar('%s/Batch' % key, batch_losses[key], iter_idx)
if key in epoch_losses:
epoch_losses[key] += batch_losses[key]
else:
epoch_losses[key] = batch_losses[key]
print(log_info)
with open(os.path.join(log_dir, 'loss.txt'), 'a') as fp:
# record loss weight
if batch_idx == 0:
loss_weights_info = ''
for k in self.opt['train']['loss_weight'].keys():
loss_weights_info += '%s: %f, ' % (k, self.opt['train']['loss_weight'][k])
fp.write('# Loss weights: \n' + loss_weights_info + '\n')
fp.write(log_info + '\n')
if iter_idx % self.opt['train']['ckpt_interval']['batch'] == 0 and iter_idx != 0:
for folder in glob.glob(self.opt['train']['net_ckpt_dir'] + '/batch_*'):
shutil.rmtree(folder)
model_folder = self.opt['train']['net_ckpt_dir'] + '/batch_%d' % iter_idx
os.makedirs(model_folder, exist_ok = True)
self.save_ckpt(model_folder, save_optm = False)
if iter_idx % self.opt['train']['eval_interval'] == 0 and iter_idx != 0:
# if True:
self.mini_test()
self.set_train()
time1 = time.time()
print('One iteration costs %f secs' % (time1 - time0))
time0 = time1
if iter_idx == self.iter_num:
return
""" EPOCH """
# record epoch loss
for key in epoch_losses.keys():
epoch_losses[key] /= self.batch_num
writer.add_scalar('%s/Epoch' % key, epoch_losses[key], epoch_idx)
if epoch_idx % self.opt['train']['ckpt_interval']['epoch'] == 0:
model_folder = self.opt['train']['net_ckpt_dir'] + '/epoch_%d' % epoch_idx
os.makedirs(model_folder, exist_ok = True)
self.save_ckpt(model_folder)
if self.batch_num > 50:
latest_folder = self.opt['train']['net_ckpt_dir'] + '/epoch_latest'
os.makedirs(latest_folder, exist_ok = True)
self.save_ckpt(latest_folder)
writer.close()
@torch.no_grad()
def mini_test(self):
""" Test during training """
pass
def forward_one_pass(self, items):
raise NotImplementedError('"forward_one_pass" method is not implemented!')
def update_config_before_epoch(self, epoch_idx):
pass
|