Spaces:
Running
Running
File size: 18,432 Bytes
7648567 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
import glob
import os
import numpy as np
import torch
import torch.nn.functional as F
import trimesh
import scipy.sparse as sp
import collections
def rodrigues(theta):
"""Convert axis-angle representation to rotation matrix.
Args:
theta: size = [B, 3]
Returns:
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
"""
l1norm = torch.norm(theta + 1e-8, p=2, dim=1)
angle = torch.unsqueeze(l1norm, -1)
normalized = torch.div(theta, angle)
angle = angle * 0.5
v_cos = torch.cos(angle)
v_sin = torch.sin(angle)
quat = torch.cat([v_cos, v_sin * normalized], dim=1)
return quat2mat(quat)
def quat2mat(quat):
"""Convert quaternion coefficients to rotation matrix.
Args:
quat: size = [B, 4] 4 <===>(w, x, y, z)
Returns:
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
"""
norm_quat = quat
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True)
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3]
B = quat.size(0)
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
wx, wy, wz = w * x, w * y, w * z
xy, xz, yz = x * y, x * z, y * z
rotMat = torch.stack([w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz,
2 * wz + 2 * xy, w2 - x2 + y2 - z2, 2 * yz - 2 * wx,
2 * xz - 2 * wy, 2 * wx + 2 * yz, w2 - x2 - y2 + z2], dim=1).view(B, 3, 3)
return rotMat
def inv_4x4(mats):
"""Calculate the inverse of homogeneous transformations
:param mats: [B, 4, 4]
:return:
"""
Rs = mats[:, :3, :3]
ts = mats[:, :3, 3:]
# R_invs = torch.transpose(Rs, 1, 2)
R_invs = torch.inverse(Rs)
t_invs = -torch.matmul(R_invs, ts)
Rt_invs = torch.cat([R_invs, t_invs], dim=-1) # [B, 3, 4]
device = R_invs.device
pad_row = torch.FloatTensor([0, 0, 0, 1]).to(device).view(1, 1, 4).expand(Rs.shape[0], -1, -1)
mat_invs = torch.cat([Rt_invs, pad_row], dim=1)
return mat_invs
def as_mesh(scene_or_mesh):
"""
Convert a possible scene to a mesh.
If conversion occurs, the returned mesh has only vertex and face data.
"""
if isinstance(scene_or_mesh, trimesh.Scene):
if len(scene_or_mesh.geometry) == 0:
mesh = None # empty scene
else:
# we lose texture information here
mesh = trimesh.util.concatenate(
tuple(trimesh.Trimesh(vertices=g.vertices, faces=g.faces)
for g in scene_or_mesh.geometry.values()))
else:
assert(isinstance(scene_or_mesh, trimesh.Trimesh))
mesh = scene_or_mesh
return mesh
def get_edge_unique(faces):
"""
Parameters
------------
faces: n x 3 int array
Should be from a watertight mesh without degenerated triangles and intersection
"""
faces = np.asanyarray(faces)
# each face has three edges
edges = faces[:, [0, 1, 1, 2, 2, 0]].reshape((-1, 2))
flags = edges[:, 0] < edges[:, 1]
edges = edges[flags]
return edges
def get_neighbors(edges):
neighbors = collections.defaultdict(set)
[(neighbors[edge[0]].add(edge[1]),
neighbors[edge[1]].add(edge[0]))
for edge in edges]
max_index = edges.max() + 1
array = [list(neighbors[i]) for i in range(max_index)]
return array
def construct_degree_matrix(vnum, faces):
row = col = list(range(vnum))
value = [0] * vnum
es = get_edge_unique(faces)
for e in es:
if e[0] < e[1]:
value[e[0]] += 1
value[e[0]] += 1
dm = sp.coo_matrix((value, (row, col)), shape=(vnum, vnum), dtype=np.float32)
return dm
def construct_neighborhood_matrix(vnum, faces):
row = list()
col = list()
value = list()
es = get_edge_unique(faces)
for e in es:
if e[0] < e[1]:
row.append(e[0])
col.append(e[1])
value.append(1)
row.append(e[1])
col.append(e[0])
value.append(1)
nm = sp.coo_matrix((value, (row, col)), shape=(vnum, vnum), dtype=np.float32)
return nm
def construct_laplacian_matrix(vnum, faces, normalized=False):
edges = get_edge_unique(faces)
neighbors = get_neighbors(edges)
col = np.concatenate(neighbors)
row = np.concatenate([[i] * len(n)
for i, n in enumerate(neighbors)])
col = np.concatenate([col, np.arange(0, vnum)])
row = np.concatenate([row, np.arange(0, vnum)])
if normalized:
data = [[1.0 / len(n)] * len(n) for n in neighbors]
data += [[-1.0] * vnum]
else:
data = [[1.0] * len(n) for n in neighbors]
data += [[-len(n) for n in neighbors]]
data = np.concatenate(data)
# create the sparse matrix
matrix = sp.coo_matrix((data, (row, col)), shape=[vnum] * 2)
return matrix
def rotationx_4x4(theta):
return np.array([
[1.0, 0.0, 0.0, 0.0],
[0.0, np.cos(theta / 180 * np.pi), np.sin(theta / 180 * np.pi), 0.0],
[0.0, -np.sin(theta / 180 * np.pi), np.cos(theta / 180 * np.pi), 0.0],
[0.0, 0.0, 0.0, 1.0]
])
def rotationy_4x4(theta):
return np.array([
[np.cos(theta / 180 * np.pi), 0.0, np.sin(theta / 180 * np.pi), 0.0],
[0.0, 1.0, 0.0, 0.0],
[-np.sin(theta / 180 * np.pi), 0.0, np.cos(theta / 180 * np.pi), 0.0],
[0.0, 0.0, 0.0, 1.0]
])
def rotationz_4x4(theta):
return np.array([
[np.cos(theta / 180 * np.pi), np.sin(theta / 180 * np.pi), 0.0, 0.0],
[-np.sin(theta / 180 * np.pi), np.cos(theta / 180 * np.pi), 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0],
[0.0, 0.0, 0.0, 1.0]
])
def rotationx_3x3(theta):
return np.array([
[1.0, 0.0, 0.0],
[0.0, np.cos(theta / 180 * np.pi), np.sin(theta / 180 * np.pi)],
[0.0, -np.sin(theta / 180 * np.pi), np.cos(theta / 180 * np.pi)],
])
def rotationy_3x3(theta):
return np.array([
[np.cos(theta / 180 * np.pi), 0.0, np.sin(theta / 180 * np.pi)],
[0.0, 1.0, 0.0],
[-np.sin(theta / 180 * np.pi), 0.0, np.cos(theta / 180 * np.pi)],
])
def rotationz_3x3(theta):
return np.array([
[np.cos(theta / 180 * np.pi), np.sin(theta / 180 * np.pi), 0.0],
[-np.sin(theta / 180 * np.pi), np.cos(theta / 180 * np.pi), 0.0],
[0.0, 0.0, 1.0],
])
def generate_point_grids(vol_res):
x_coords = np.array(range(0, vol_res), dtype=np.float32)
y_coords = np.array(range(0, vol_res), dtype=np.float32)
z_coords = np.array(range(0, vol_res), dtype=np.float32)
yv, xv, zv = np.meshgrid(x_coords, y_coords, z_coords)
xv = np.reshape(xv, (-1, 1))
yv = np.reshape(yv, (-1, 1))
zv = np.reshape(zv, (-1, 1))
pts = np.concatenate([xv, yv, zv], axis=-1)
pts = pts.astype(np.float32)
return pts
def infer_occupancy_value_grid_octree(test_res, pts, query_fn, init_res=64, ignore_thres=0.05):
pts = np.reshape(pts, (test_res, test_res, test_res, 3))
pts_ov = np.zeros([test_res, test_res, test_res])
dirty = np.ones_like(pts_ov, dtype=np.bool)
grid_mask = np.zeros_like(pts_ov, dtype=np.bool)
reso = test_res // init_res
while reso > 0:
grid_mask[0:test_res:reso, 0:test_res:reso, 0:test_res:reso] = True
test_mask = np.logical_and(grid_mask, dirty)
pts_ = pts[test_mask]
pts_ov[test_mask] = np.reshape(query_fn(pts_), pts_ov[test_mask].shape)
if reso <= 1:
break
for x in range(0, test_res - reso, reso):
for y in range(0, test_res - reso, reso):
for z in range(0, test_res - reso, reso):
# if center marked, return
if not dirty[x + reso // 2, y + reso // 2, z + reso // 2]:
continue
v0 = pts_ov[x, y, z]
v1 = pts_ov[x, y, z + reso]
v2 = pts_ov[x, y + reso, z]
v3 = pts_ov[x, y + reso, z + reso]
v4 = pts_ov[x + reso, y, z]
v5 = pts_ov[x + reso, y, z + reso]
v6 = pts_ov[x + reso, y + reso, z]
v7 = pts_ov[x + reso, y + reso, z + reso]
v = np.array([v0, v1, v2, v3, v4, v5, v6, v7])
v_min = np.min(v)
v_max = np.max(v)
# this cell is all the same
if (v_max - v_min) < ignore_thres:
pts_ov[x:x + reso, y:y + reso, z:z + reso] = (v_max + v_min) / 2
dirty[x:x + reso, y:y + reso, z:z + reso] = False
reso //= 2
return pts_ov
def batch_rod2quat(rot_vecs):
batch_size = rot_vecs.shape[0]
angle = torch.norm(rot_vecs + 1e-16, dim=1, keepdim=True)
rot_dir = rot_vecs / angle
cos = torch.cos(angle / 2)
sin = torch.sin(angle / 2)
# Bx1 arrays
rx, ry, rz = torch.split(rot_dir, 1, dim=1)
qx = rx * sin
qy = ry * sin
qz = rz * sin
qw = cos-1.0
return torch.cat([qx,qy,qz,qw], dim=1)
def batch_quat2matrix(rvec):
'''
args:
rvec: (B, N, 4)
'''
B, N, _ = rvec.size()
theta = torch.sqrt(1e-5 + torch.sum(rvec ** 2, dim=2))
rvec = rvec / theta[:, :, None]
return torch.stack((
1. - 2. * rvec[:, :, 1] ** 2 - 2. * rvec[:, :, 2] ** 2,
2. * (rvec[:, :, 0] * rvec[:, :, 1] - rvec[:, :, 2] * rvec[:, :, 3]),
2. * (rvec[:, :, 0] * rvec[:, :, 2] + rvec[:, :, 1] * rvec[:, :, 3]),
2. * (rvec[:, :, 0] * rvec[:, :, 1] + rvec[:, :, 2] * rvec[:, :, 3]),
1. - 2. * rvec[:, :, 0] ** 2 - 2. * rvec[:, :, 2] ** 2,
2. * (rvec[:, :, 1] * rvec[:, :, 2] - rvec[:, :, 0] * rvec[:, :, 3]),
2. * (rvec[:, :, 0] * rvec[:, :, 2] - rvec[:, :, 1] * rvec[:, :, 3]),
2. * (rvec[:, :, 0] * rvec[:, :, 3] + rvec[:, :, 1] * rvec[:, :, 2]),
1. - 2. * rvec[:, :, 0] ** 2 - 2. * rvec[:, :, 1] ** 2
), dim=2).view(B, N, 3, 3)
def get_posemap(map_type, n_joints, parents, n_traverse=1, normalize=True):
pose_map = torch.zeros(n_joints,n_joints-1)
if map_type == 'parent':
for i in range(n_joints-1):
pose_map[i+1,i] = 1.0
elif map_type == 'children':
for i in range(n_joints-1):
parent = parents[i+1]
for j in range(n_traverse):
pose_map[parent, i] += 1.0
if parent == 0:
break
parent = parents[parent]
if normalize:
pose_map /= pose_map.sum(0,keepdim=True)+1e-16
elif map_type == 'both':
for i in range(n_joints-1):
pose_map[i+1,i] += 1.0
parent = parents[i+1]
for j in range(n_traverse):
pose_map[parent, i] += 1.0
if parent == 0:
break
parent = parents[parent]
if normalize:
pose_map /= pose_map.sum(0,keepdim=True)+1e-16
else:
raise NotImplementedError('unsupported pose map type [%s]' % map_type)
pose_map = torch.cat([torch.zeros(n_joints, 1), pose_map], dim=1)
return pose_map
def vertices_to_triangles(vertices, faces):
"""
:param vertices: [batch size, number of vertices, 3]
:param faces: [batch size, number of faces, 3)
:return: [batch size, number of faces, 3, 3]
"""
assert (vertices.ndimension() == 3)
assert (faces.ndimension() == 3)
assert (vertices.shape[0] == faces.shape[0])
assert (vertices.shape[2] == 3)
assert (faces.shape[2] == 3)
bs, nv = vertices.shape[:2]
bs, nf = faces.shape[:2]
device = vertices.device
faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None]
vertices = vertices.reshape((bs * nv, 3))
# pytorch only supports long and byte tensors for indexing
return vertices[faces.long()]
def calc_face_normals(vertices, faces):
assert len(vertices.shape) == 3
assert len(faces.shape) == 2
if isinstance(faces, np.ndarray):
faces = torch.from_numpy(faces.astype(np.int64)).to(vertices.device)
batch_size, pt_num = vertices.shape[:2]
face_num = faces.shape[0]
triangles = vertices_to_triangles(vertices, faces.unsqueeze(0).expand(batch_size, -1, -1))
triangles = triangles.reshape((batch_size * face_num, 3, 3))
v10 = triangles[:, 0] - triangles[:, 1]
v12 = triangles[:, 2] - triangles[:, 1]
# pytorch normalize divides by max(norm, eps) instead of (norm+eps) in chainer
normals = F.normalize(torch.cross(v10, v12), eps=1e-5)
normals = normals.reshape((batch_size, face_num, 3))
return normals
def calc_vert_normals(vertices, faces):
"""
vertices: [B, N, 3]
faces: [F, 3]
"""
normals = torch.zeros_like(vertices)
v0s = torch.index_select(vertices, dim=1, index=faces[:, 0]) # [B, F, 3]
v1s = torch.index_select(vertices, dim=1, index=faces[:, 1])
v2s = torch.index_select(vertices, dim=1, index=faces[:, 2])
normals = torch.index_add(normals, dim=1, index=faces[:, 1], source=torch.cross(v2s-v1s, v0s-v1s, dim=-1))
normals = torch.index_add(normals, dim=1, index=faces[:, 2], source=torch.cross(v0s-v2s, v1s-v2s, dim=-1))
normals = torch.index_add(normals, dim=1, index=faces[:, 0], source=torch.cross(v1s-v0s, v2s-v0s, dim=-1))
normals = F.normalize(normals, dim=-1)
return normals
def calc_vert_normals_numpy(vertices, faces):
assert len(vertices.shape) == 2
assert len(faces.shape) == 2
nmls = np.zeros_like(vertices)
fv0 = vertices[faces[:, 0]]
fv1 = vertices[faces[:, 1]]
fv2 = vertices[faces[:, 2]]
face_nmls = np.cross(fv1-fv0, fv2-fv0, axis=-1)
face_nmls = face_nmls / (np.linalg.norm(face_nmls, axis=-1, keepdims=True) + 1e-20)
for f, fn in zip(faces, face_nmls):
nmls[f] += fn
nmls = nmls / (np.linalg.norm(nmls, axis=-1, keepdims=True) + 1e-20)
return nmls
def glUV2torchUV(gl_uv):
torch_uv = torch.stack([
gl_uv[..., 0]*2.0-1.0,
gl_uv[..., 1]*-2.0+1.0
], dim=-1)
return torch_uv
def normalize_vert_bbox(verts, dim=-1, per_axis=False):
bbox_min = torch.min(verts, dim=dim, keepdim=True)[0]
bbox_max = torch.max(verts, dim=dim, keepdim=True)[0]
verts = verts - 0.5 * (bbox_max + bbox_min)
if per_axis:
verts = 2 * verts / (bbox_max - bbox_min)
else:
verts = 2 * verts / torch.max(bbox_max-bbox_min, dim=dim, keepdim=True)[0]
return verts
def upsample_sdf_volume(sdf, upsample_factor):
assert sdf.shape[0] == sdf.shape[1] == sdf.shape[2]
coarse_resolution = sdf.shape[0]
fine_resolution = coarse_resolution * upsample_factor
sdf_interp_buffer = np.zeros([2, 2, 2, coarse_resolution, coarse_resolution, coarse_resolution],
dtype=np.float32)
dx_list = [0, 1, 0, 1, 0, 1, 0, 1]
dy_list = [0, 0, 1, 1, 0, 0, 1, 1]
dz_list = [0, 0, 0, 0, 1, 1, 1, 1]
for dx, dy, dz in zip(dx_list, dy_list, dz_list):
sdf_interp_buffer[dx, dy, dz, :, :, :] = np.roll(sdf, (-dx, -dy, -dz), axis=(0, 1, 2))
sdf_fine = np.zeros([fine_resolution, fine_resolution, fine_resolution], dtype=np.float32)
for dx in range(upsample_factor):
for dy in range(upsample_factor):
for dz in range(upsample_factor):
wx = (1.0 - dx / upsample_factor)
wy = (1.0 - dy / upsample_factor)
wz = (1.0 - dz / upsample_factor)
sdf_fine[dx::upsample_factor, dy::upsample_factor, dz::upsample_factor] += \
wx * wy * wz * sdf_interp_buffer[0, 0, 0]
sdf_fine[dx::upsample_factor, dy::upsample_factor, dz::upsample_factor] += \
(1.0 - wx) * wy * wz * sdf_interp_buffer[1, 0, 0]
sdf_fine[dx::upsample_factor, dy::upsample_factor, dz::upsample_factor] += \
wx * (1.0 - wy) * wz * sdf_interp_buffer[0, 1, 0]
sdf_fine[dx::upsample_factor, dy::upsample_factor, dz::upsample_factor] += \
(1.0 - wx) * (1.0 - wy) * wz * sdf_interp_buffer[1, 1, 0]
sdf_fine[dx::upsample_factor, dy::upsample_factor, dz::upsample_factor] += \
wx * wy * (1.0 - wz) * sdf_interp_buffer[0, 0, 1]
sdf_fine[dx::upsample_factor, dy::upsample_factor, dz::upsample_factor] += \
(1.0 - wx) * wy * (1.0 - wz) * sdf_interp_buffer[1, 0, 1]
sdf_fine[dx::upsample_factor, dy::upsample_factor, dz::upsample_factor] += \
wx * (1.0 - wy) * (1.0 - wz) * sdf_interp_buffer[0, 1, 1]
sdf_fine[dx::upsample_factor, dy::upsample_factor, dz::upsample_factor] += \
(1.0 - wx) * (1.0 - wy) * (1.0 - wz) * sdf_interp_buffer[1, 1, 1]
return sdf_fine
def search_nearest_correspondence(src, tgt):
tgt_idx = np.zeros(len(src), dtype=np.int32)
tgt_dist = np.zeros(len(src), dtype=np.float32)
for i in range(len(src)):
dist = np.linalg.norm(tgt - src[i:(i+1)], axis=1, keepdims=False)
tgt_idx[i] = np.argmin(dist)
tgt_dist[i] = dist[tgt_idx[i]]
return tgt_idx, tgt_dist
def estimate_rigid_transformation(src, tgt):
src = src.transpose()
tgt = tgt.transpose()
mu1, mu2 = src.mean(axis=1, keepdims=True), tgt.mean(axis=1, keepdims=True)
X1, X2 = src - mu1, tgt - mu2
K = X1.dot(X2.T)
U, s, Vh = np.linalg.svd(K)
V = Vh.T
Z = np.eye(U.shape[0])
Z[-1, -1] *= np.sign(np.linalg.det(U.dot(V.T)))
R = V.dot(Z.dot(U.T))
t = mu2 - R.dot(mu1)
# orient, _ = cv.Rodrigues(R)
# orient = orient.reshape([-1])
# t = t.reshape([-1])
# return orient, t
transf = np.eye(4, dtype=np.float32)
transf[:3, :3] = R
transf[:3, 3] = t.reshape([-1])
return transf
|