File size: 8,830 Bytes
ed82520
 
 
 
4e77c00
 
 
556fb16
 
ed82520
 
 
 
 
 
556fb16
ed82520
 
 
 
 
 
556fb16
 
 
 
 
ed82520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e77c00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46aba97
 
4e77c00
 
43aeb22
556fb16
ed82520
556fb16
 
 
 
 
 
 
 
 
 
 
ed82520
43aeb22
ed82520
 
 
 
43aeb22
ed82520
 
 
 
 
 
 
 
 
 
 
43aeb22
ed82520
 
 
43aeb22
 
ed82520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43aeb22
ed82520
 
 
 
 
 
 
 
 
 
 
 
43aeb22
 
 
4e77c00
 
43aeb22
 
46aba97
 
 
 
 
 
 
 
43aeb22
 
 
 
 
 
 
 
 
 
 
556fb16
43aeb22
4e77c00
43aeb22
4e77c00
 
43aeb22
556fb16
43aeb22
 
18beb8e
 
43aeb22
 
556fb16
43aeb22
4e77c00
556fb16
4e77c00
 
 
 
556fb16
 
 
43aeb22
 
 
 
 
 
 
 
 
556fb16
 
4e77c00
 
 
43aeb22
 
 
 
 
 
 
4e77c00
43aeb22
 
 
 
18beb8e
 
 
43aeb22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import gradio as gr
import torch
import numpy as np
import PIL
import base64
from io import BytesIO
from PIL import Image
# import for face detection
import retinaface

from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from diffusers import UniPCMultistepScheduler

from spiga.inference.config import ModelConfig
from spiga.inference.framework import SPIGAFramework
import spiga.demo.analyze.track.retinasort.config as cfg

import matplotlib.pyplot as plt
from matplotlib.path import Path
import matplotlib.patches as patches

# Bounding boxes
config = cfg.cfg_retinasort
face_detector = retinaface.RetinaFaceDetector(model=config['retina']['model_name'],
                                              device='cuda' if torch.cuda.is_available() else 'cpu',
                                              extra_features=config['retina']['extra_features'],
                                              cfg_postreat=config['retina']['postreat'])
# Landmark extraction
spiga_extractor = SPIGAFramework(ModelConfig("300wpublic"))

uncanny_controlnet = ControlNetModel.from_pretrained(
    "multimodalart/uncannyfaces_25K", torch_dtype=torch.float16
)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
    "stabilityai/stable-diffusion-2-1-base", controlnet=uncanny_controlnet, safety_checker=None, torch_dtype=torch.float16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")

# Generator seed,
generator = torch.manual_seed(0)

canvas_html = "<face-canvas id='canvas-root' style='display:flex;max-width: 500px;margin: 0 auto;'></face-canvas>"
load_js = """
async () => {
const url = "https://huggingface.co/datasets/radames/gradio-components/raw/main/face-canvas.js"
fetch(url)
  .then(res => res.text())
  .then(text => {
    const script = document.createElement('script');
    script.type = "module"
    script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' }));
    document.head.appendChild(script);
  });
}
"""
get_js_image = """
async (image_in_img, prompt, image_file_live_opt, live_conditioning) => {
  const canvasEl = document.getElementById("canvas-root");
  const imageData = canvasEl? canvasEl._data : null;
  return [image_in_img, prompt, image_file_live_opt, imageData]
}
"""


def get_bounding_box(image):
    pil_image = Image.fromarray(image)
    face_detector.set_input_shape(pil_image.size[1], pil_image.size[0])
    features = face_detector.inference(pil_image)

    if (features is None) and (len(features['bbox']) <= 0):
        raise Exception("No face detected")
    # get the first face detected
    bbox = features['bbox'][0]
    x1, y1, x2, y2 = bbox[:4]
    bbox_wh = [x1, y1, x2-x1, y2-y1]
    return bbox_wh


def get_landmarks(image, bbox):
    features = spiga_extractor.inference(image, [bbox])
    return features['landmarks'][0]


def get_patch(landmarks, color='lime', closed=False):
    contour = landmarks
    ops = [Path.MOVETO] + [Path.LINETO]*(len(contour)-1)
    facecolor = (0, 0, 0, 0)      # Transparent fill color, if open
    if closed:
        contour.append(contour[0])
        ops.append(Path.CLOSEPOLY)
        facecolor = color
    path = Path(contour, ops)
    return patches.PathPatch(path, facecolor=facecolor, edgecolor=color, lw=4)


def conditioning_from_landmarks(landmarks, size=512):
    # Precisely control output image size
    dpi = 72
    fig, ax = plt.subplots(
        1, figsize=[size/dpi, size/dpi], tight_layout={'pad': 0})
    fig.set_dpi(dpi)

    black = np.zeros((size, size, 3))
    ax.imshow(black)

    face_patch = get_patch(landmarks[0:17])
    l_eyebrow = get_patch(landmarks[17:22], color='yellow')
    r_eyebrow = get_patch(landmarks[22:27], color='yellow')
    nose_v = get_patch(landmarks[27:31], color='orange')
    nose_h = get_patch(landmarks[31:36], color='orange')
    l_eye = get_patch(landmarks[36:42], color='magenta', closed=True)
    r_eye = get_patch(landmarks[42:48], color='magenta', closed=True)
    outer_lips = get_patch(landmarks[48:60], color='cyan', closed=True)
    inner_lips = get_patch(landmarks[60:68], color='blue', closed=True)

    ax.add_patch(face_patch)
    ax.add_patch(l_eyebrow)
    ax.add_patch(r_eyebrow)
    ax.add_patch(nose_v)
    ax.add_patch(nose_h)
    ax.add_patch(l_eye)
    ax.add_patch(r_eye)
    ax.add_patch(outer_lips)
    ax.add_patch(inner_lips)

    plt.axis('off')
    fig.canvas.draw()
    buffer, (width, height) = fig.canvas.print_to_buffer()
    assert width == height
    assert width == size
    buffer = np.frombuffer(buffer, np.uint8).reshape((height, width, 4))
    buffer = buffer[:, :, 0:3]
    plt.close(fig)
    return PIL.Image.fromarray(buffer)


def get_conditioning(image):
    # Steps: convert to BGR and then:
    # - Retrieve bounding box using `dlib`
    # - Obtain landmarks using `spiga`
    # - Create conditioning image with custom `matplotlib` code
    # TODO: error if bbox is too small
    image.thumbnail((512, 512))
    image = np.array(image)
    image = image[:, :, ::-1]
    bbox = get_bounding_box(image)
    landmarks = get_landmarks(image, bbox)
    spiga_seg = conditioning_from_landmarks(landmarks)
    return spiga_seg


def generate_images(image_in_img, prompt, image_file_live_opt='file', live_conditioning=None):
    if image_in_img is None and 'image' not in live_conditioning:
        raise gr.Error("Please provide an image")
    try:
        if image_file_live_opt == 'file':
            conditioning = get_conditioning(image_in_img)
        elif image_file_live_opt == 'webcam':
            base64_img = live_conditioning['image']
            image_data = base64.b64decode(base64_img.split(',')[1])
            conditioning = Image.open(BytesIO(image_data)).convert(
                'RGB').resize((512, 512))

        output = pipe(
            prompt,
            conditioning,
            generator=generator,
            num_images_per_prompt=3,
            num_inference_steps=20,
        )
        return [conditioning] + output.images
    except Exception as e:
        raise gr.Error(str(e))


def toggle(choice):
    if choice == "file":
        return gr.update(visible=True, value=None), gr.update(visible=False, value=None)
    elif choice == "webcam":
        return gr.update(visible=False, value=None), gr.update(visible=True, value=canvas_html)


with gr.Blocks() as blocks:
    gr.Markdown("""
        ## Generate Uncanny Faces with ControlNet Stable Diffusion
        [Check out our blog to see how this was done (and train your own controlnet)](https://huggingface.co/blog/train-your-controlnet)
    """)
    with gr.Row():
        live_conditioning = gr.JSON(value={}, visible=False)
        with gr.Column():
            image_file_live_opt = gr.Radio(["file", "webcam"], value="file",
                                           label="How would you like to upload your image?")
            image_in_img = gr.Image(source="upload", visible=True, type="pil")
            canvas = gr.HTML(None, elem_id="canvas_html", visible=False)

            image_file_live_opt.change(fn=toggle,
                                       inputs=[image_file_live_opt],
                                       outputs=[image_in_img, canvas],
                                       queue=False)
            prompt = gr.Textbox(
                label="Enter your prompt",
                max_lines=1,
                placeholder="best quality, extremely detailed",
            )
            run_button = gr.Button("Generate")
        with gr.Column():
            gallery = gr.Gallery().style(grid=[2], height="auto")
    run_button.click(fn=generate_images,
                     inputs=[image_in_img, prompt,
                             image_file_live_opt, live_conditioning],
                     outputs=[gallery],
                     _js=get_js_image)
    blocks.load(None, None, None, _js=load_js)
    gr.Examples(fn=generate_images,
                examples=[
                    ["./examples/pedro-512.jpg",
                        "Highly detailed photograph of young woman smiling, with palm trees in the background"],
                    ["./examples/image1.jpg",
                        "Highly detailed photograph of a scary clown"],
                    ["./examples/image0.jpg",
                        "Highly detailed photograph of Madonna"],
                ],
                inputs=[image_in_img, prompt],
                outputs=[gallery],
                cache_examples=True)
    gr.Markdown('''
    This Space was trained on synthetic 3D faces to learn how to keep a pose - however it also learned that all faces are synthetic 3D faces, [learn more on our blog](https://huggingface.co/blog/train-your-controlnet), it uses a custom visualization based on SPIGA face landmarks for conditioning.
    ''')
blocks.launch()