File size: 11,454 Bytes
cab8a49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import math
import torch
import numpy as np
from torch import nn


class Attention2D(nn.Module):
    def __init__(self, c, nhead, dropout=0.0):
        super().__init__()
        self.attn = torch.nn.MultiheadAttention(c, nhead, dropout=dropout, bias=True, batch_first=True)

    def forward(self, x, kv, self_attn=False):
        orig_shape = x.shape
        x = x.view(x.size(0), x.size(1), -1).permute(0, 2, 1)
        if self_attn:
            kv = torch.cat([x, kv], dim=1)
        x = self.attn(x, kv, kv, need_weights=False)[0]
        x = x.permute(0, 2, 1).view(*orig_shape)
        return x


class LayerNorm2d(nn.LayerNorm):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def forward(self, x):
        return super().forward(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)


class GlobalResponseNorm(nn.Module):
    "Taken from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105"
    def __init__(self, dim):
        super().__init__()
        self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
        self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))

    def forward(self, x):
        Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
        Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
        return self.gamma * (x * Nx) + self.beta + x


class ResBlock(nn.Module):
    def __init__(self, c, c_skip=None, kernel_size=3, dropout=0.0):
        super().__init__()
        self.depthwise = nn.Conv2d(c + c_skip, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c)
        self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6)
        self.channelwise = nn.Sequential(
            nn.Linear(c, c * 4),
            nn.GELU(),
            GlobalResponseNorm(c * 4),
            nn.Dropout(dropout),
            nn.Linear(c * 4, c)
        )

    def forward(self, x, x_skip=None):
        x_res = x
        if x_skip is not None:
            x = torch.cat([x, x_skip], dim=1)
        x = self.norm(self.depthwise(x)).permute(0, 2, 3, 1)
        x = self.channelwise(x).permute(0, 3, 1, 2)
        return x + x_res


class AttnBlock(nn.Module):
    def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0):
        super().__init__()
        self.self_attn = self_attn
        self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6)
        self.attention = Attention2D(c, nhead, dropout)
        self.kv_mapper = nn.Sequential(
            nn.SiLU(),
            nn.Linear(c_cond, c)
        )

    def forward(self, x, kv):
        kv = self.kv_mapper(kv)
        x = x + self.attention(self.norm(x), kv, self_attn=self.self_attn)
        return x


class FeedForwardBlock(nn.Module):
    def __init__(self, c, dropout=0.0):
        super().__init__()
        self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6)
        self.channelwise = nn.Sequential(
            nn.Linear(c, c * 4),
            nn.GELU(),
            GlobalResponseNorm(c * 4),
            nn.Dropout(dropout),
            nn.Linear(c * 4, c)
        )

    def forward(self, x):
        x = x + self.channelwise(self.norm(x).permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
        return x


class TimestepBlock(nn.Module):
    def __init__(self, c, c_timestep):
        super().__init__()
        self.mapper = nn.Linear(c_timestep, c * 2)

    def forward(self, x, t):
        a, b = self.mapper(t)[:, :, None, None].chunk(2, dim=1)
        return x * (1 + a) + b


class Paella(nn.Module):
    def __init__(self, c_in=256, c_out=256, num_labels=8192, c_r=64, patch_size=2, c_cond=1024,
                 c_hidden=[640, 1280, 1280], nhead=[-1, 16, 16], blocks=[6, 16, 6], level_config=['CT', 'CTA', 'CTA'],
                 clip_embd=1024, byt5_embd=1536, clip_seq_len=4, kernel_size=3, dropout=0.1, self_attn=True):
        super().__init__()
        self.c_r = c_r
        self.c_cond = c_cond
        self.num_labels = num_labels
        if not isinstance(dropout, list):
            dropout = [dropout] * len(c_hidden)

        # CONDITIONING
        self.byt5_mapper = nn.Linear(byt5_embd, c_cond)
        self.clip_mapper = nn.Linear(clip_embd, c_cond * clip_seq_len)
        self.clip_image_mapper = nn.Linear(clip_embd, c_cond * clip_seq_len)
        self.seq_norm = nn.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6)

        self.in_mapper = nn.Sequential(
            nn.Embedding(num_labels, c_in),
            nn.LayerNorm(c_in, elementwise_affine=False, eps=1e-6)
        )
        self.embedding = nn.Sequential(
            nn.PixelUnshuffle(patch_size),
            nn.Conv2d(c_in * (patch_size ** 2), c_hidden[0], kernel_size=1),
            LayerNorm2d(c_hidden[0], elementwise_affine=False, eps=1e-6)
        )

        def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0):
            if block_type == 'C':
                return ResBlock(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout)
            elif block_type == 'A':
                return AttnBlock(c_hidden, c_cond, nhead, self_attn=self_attn, dropout=dropout)
            elif block_type == 'F':
                return FeedForwardBlock(c_hidden, dropout=dropout)
            elif block_type == 'T':
                return TimestepBlock(c_hidden, c_r)
            else:
                raise Exception(f'Block type {block_type} not supported')

        # DOWN BLOCKS
        self.down_blocks = nn.ModuleList()
        for i in range(len(c_hidden)):
            down_block = nn.ModuleList()
            if i > 0:
                down_block.append(nn.Sequential(
                    LayerNorm2d(c_hidden[i - 1], elementwise_affine=False, eps=1e-6),
                    nn.Conv2d(c_hidden[i - 1], c_hidden[i], kernel_size=2, stride=2),
                ))
            for _ in range(blocks[i]):
                for block_type in level_config[i]:
                    down_block.append(get_block(block_type, c_hidden[i], nhead[i], dropout=dropout[i]))
            self.down_blocks.append(down_block)

        # UP BLOCKS
        self.up_blocks = nn.ModuleList()
        for i in reversed(range(len(c_hidden))):
            up_block = nn.ModuleList()
            for j in range(blocks[i]):
                for k, block_type in enumerate(level_config[i]):
                    up_block.append(get_block(block_type, c_hidden[i], nhead[i],
                                              c_skip=c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0,
                                              dropout=dropout[i]))
            if i > 0:
                up_block.append(nn.Sequential(
                    LayerNorm2d(c_hidden[i], elementwise_affine=False, eps=1e-6),
                    nn.ConvTranspose2d(c_hidden[i], c_hidden[i - 1], kernel_size=2, stride=2),
                ))
            self.up_blocks.append(up_block)

        # OUTPUT
        self.clf = nn.Sequential(
            LayerNorm2d(c_hidden[0], elementwise_affine=False, eps=1e-6),
            nn.Conv2d(c_hidden[0], c_out * (patch_size ** 2), kernel_size=1),
            nn.PixelShuffle(patch_size),
        )
        self.out_mapper = nn.Sequential(
            LayerNorm2d(c_out, elementwise_affine=False, eps=1e-6),
            nn.Conv2d(c_out, num_labels, kernel_size=1, bias=False)
        )

        # --- WEIGHT INIT ---
        self.apply(self._init_weights)  # General init
        nn.init.normal_(self.byt5_mapper.weight, std=0.02)
        nn.init.normal_(self.clip_mapper.weight, std=0.02)
        nn.init.normal_(self.clip_image_mapper.weight, std=0.02)
        torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02)
        nn.init.constant_(self.clf[1].weight, 0)
        nn.init.normal_(self.in_mapper[0].weight, std=np.sqrt(1 / num_labels))
        self.out_mapper[-1].weight.data = self.in_mapper[0].weight.data[:, :, None, None].clone()

        for level_block in self.down_blocks + self.up_blocks:
            for block in level_block:
                if isinstance(block, ResBlock) or isinstance(block, FeedForwardBlock):
                    block.channelwise[-1].weight.data *= np.sqrt(1 / sum(blocks))
                elif isinstance(block, TimestepBlock):
                    nn.init.constant_(block.mapper.weight, 0)

    def _init_weights(self, m):
        if isinstance(m, (nn.Conv2d, nn.Linear)):
            torch.nn.init.xavier_uniform_(m.weight)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)

    def gen_r_embedding(self, r, max_positions=10000):
        r = r * max_positions
        half_dim = self.c_r // 2
        emb = math.log(max_positions) / (half_dim - 1)
        emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
        emb = r[:, None] * emb[None, :]
        emb = torch.cat([emb.sin(), emb.cos()], dim=1)
        if self.c_r % 2 == 1:
            emb = nn.functional.pad(emb, (0, 1), mode='constant')
        return emb

    def gen_c_embeddings(self, byt5, clip, clip_image):
        seq = self.byt5_mapper(byt5)
        if clip is not None:
            clip = self.clip_mapper(clip).view(clip.size(0), -1, self.c_cond)
            seq = torch.cat([seq, clip], dim=1)
        if clip_image is not None:
            clip_image = self.clip_image_mapper(clip_image).view(clip_image.size(0), -1, self.c_cond)
            seq = torch.cat([seq, clip_image], dim=1)
        seq = self.seq_norm(seq)
        return seq

    def _down_encode(self, x, r_embed, c_embed):
        level_outputs = []
        for down_block in self.down_blocks:
            for block in down_block:
                if isinstance(block, ResBlock):
                    x = block(x)
                elif isinstance(block, AttnBlock):
                    x = block(x, c_embed)
                elif isinstance(block, TimestepBlock):
                    x = block(x, r_embed)
                else:
                    x = block(x)
            level_outputs.insert(0, x)
        return level_outputs

    def _up_decode(self, level_outputs, r_embed, c_embed):
        x = level_outputs[0]
        for i, up_block in enumerate(self.up_blocks):
            for j, block in enumerate(up_block):
                if isinstance(block, ResBlock):
                    x = block(x, level_outputs[i] if j == 0 and i > 0 else None)
                elif isinstance(block, AttnBlock):
                    x = block(x, c_embed)
                elif isinstance(block, TimestepBlock):
                    x = block(x, r_embed)
                else:
                    x = block(x)
        return x

    def forward(self, x, r, byt5, clip=None, clip_image=None, x_cat=None):
        if x_cat is not None:
            x = torch.cat([x, x_cat], dim=1)
        # Process the conditioning embeddings
        r_embed = self.gen_r_embedding(r)
        c_embed = self.gen_c_embeddings(byt5, clip, clip_image)

        # Model Blocks
        x = self.embedding(self.in_mapper(x).permute(0, 3, 1, 2))
        level_outputs = self._down_encode(x, r_embed, c_embed)
        x = self._up_decode(level_outputs, r_embed, c_embed)
        x = self.out_mapper(self.clf(x))
        return x

    def add_noise(self, x, t, mask=None, random_x=None):
        if mask is None:
            mask = (torch.rand_like(x.float()) <= t[:, None, None]).long()
        if random_x is None:
            random_x = torch.randint_like(x, 0, self.num_labels)
        x = x * (1 - mask) + random_x * mask
        return x, mask