Spaces:
Sleeping
Sleeping
File size: 2,579 Bytes
4e97c67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
from dotenv import load_dotenv
load_dotenv() # take environment variables from .env.
import streamlit as st
import os
from PIL import Image
import google.generativeai as genai
os.getenv("GOOGLE_API_KEY")
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
# Function to load OpenAI model and get response
def get_gemini_response(input, image, prompt):
model = genai.GenerativeModel('gemini-pro-vision')
response = model.generate_content([input, image[0], prompt])
return response.text
# Function to format numeric value as currency
def format_currency(value, currency_symbol='$'):
return f"{currency_symbol}{value:,.2f}"
# Converting image into bytes
def input_image_setup(uploaded_file):
# Check if a file has been uploaded
if uploaded_file is not None:
# Read the file into bytes
bytes_data = uploaded_file.getvalue()
image_parts = [
{
"mime_type": uploaded_file.type, # Get the mime type of the uploaded file
"data": bytes_data
}
]
return image_parts
else:
raise FileNotFoundError("No file uploaded")
# Initialize our streamlit app
st.set_page_config(page_title="Gemini Image Demo")
st.header("Gemini Application")
input_prompt = """
You are an expert in understanding invoices.
You will receive input images as invoices &
you will have to answer questions based on the input image
"""
input_text = st.text_input("Input Prompt: ", key="input")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
image = ""
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image.", use_column_width=True)
submit = st.button("Tell me about the image")
# If ask button is clicked
if submit:
try:
image_data = input_image_setup(uploaded_file)
response = get_gemini_response(input_prompt, image_data, input_text)
# Print the raw response
st.subheader("Raw Response:")
st.text(response)
# Check if the response can be converted to a numeric value
if response.replace('.', '', 1).isdigit():
numeric_response = float(response)
formatted_response = format_currency(numeric_response, currency_symbol='£')
st.subheader("The Response is")
st.write(formatted_response)
else:
st.warning("Warning: The response is not a numeric value. Displaying raw response.")
except Exception as e:
st.error(f"Error: {str(e)}")
|