File size: 14,396 Bytes
288c719 b8b5684 288c719 b8b5684 288c719 b8b5684 288c719 b8b5684 288c719 ab6660b f27e965 e386d5d f27e965 d919803 f27e965 d919803 f27e965 d919803 f27e965 d919803 f27e965 d919803 f27e965 d919803 f27e965 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
# Fonction pour filtrer les données
filter_data <- function(data, input, return_columns = NULL) {
# Vérifier si aucune colonne n'est sélectionnée
if (length(input$column) == 0) {
return(data[0])
}
# Filtrage par plage de dates
filtered_data <- data[
Annee_unique >= input$date_range[1] &
Annee_unique <= input$date_range[2]
]
pattern <- input$motcle
matches <- rep(FALSE, nrow(filtered_data))
for (col in input$column) {
if (input$regex) {
matches <- matches | grepl(pattern, filtered_data[[col]], ignore.case = TRUE)
} else {
matches <- matches | grepl(pattern, filtered_data[[col]], fixed = TRUE, ignore.case = TRUE)
}
}
filtered_data <- filtered_data[matches, ]
if (!is.null(return_columns)) {
filtered_data <- filtered_data[, ..return_columns]
}
return(filtered_data)
}
plot_histogram <- function(data_frame) {
if ("Annee_unique" %in% names(data_frame) && nrow(data_frame) > 0) {
min_year <- min(na.omit(data_frame[, Annee_unique]))
max_year <- max(na.omit(data_frame[, Annee_unique]))
breaks_hist <- seq(min_year, max_year, length.out = input$num_breaks + 1)
if (input$dist_type == "raw") {
hist(data_frame()[, Annee_unique],
main = "Distribution brute des notices",
xlab = "Année",
ylab = "Nombre",
border = "blue",
col = "lightblue",
breaks = breaks_hist)
} else {
# Compute relative distribution
filtered_counts <- hist(data_frame[, Annee_unique], plot=FALSE, breaks=breaks_hist)$counts
total_counts <- hist(data[data$Annee_unique %in% data_frame[, Annee_unique], Annee_unique], plot=FALSE, breaks=breaks_hist)$counts
relative_counts <- ifelse(total_counts == 0, 0, filtered_counts / total_counts)
# Ensure names.arg matches the length of relative_counts
names_for_bars <- round(seq(min_year, max_year, length.out = length(relative_counts)))
barplot(relative_counts,
main = "Distribution relative des notices",
xlab = "Année",
ylab = "Fréquence relative",
border = "blue",
col = "lightblue",
space = 0,
names.arg = names_for_bars)
}
} else {
plot.new()
title(main = "No data available for the selected criteria")
}
}
inst_ext_f <- function(extension) {
if(!extension %in% rownames(installed.packages())) {
install.packages(extension, dependencies = TRUE)
}
require(extension, character.only = TRUE)
}
extensions <- c("shiny",
"data.table",
"DT",
"shinyWidgets",
"stringr",
"markdown")
sapply(extensions, inst_ext_f)
data <- readRDS("dolq_min.RDS") |> setDT()
readme_content <- readLines("README.md", warn = FALSE)
ui <- fluidPage(
titlePanel("Dictionnaire des oeuvres littéraires du Québec, t. 1-6"),
tabsetPanel(
tabPanel("Recherche plein texte",
sidebarLayout(
sidebarPanel(
noUiSliderInput(inputId = "date_range",
label = "Sélectionner une période:",
min = 1830,
max = 1980,
value = c(1830, 1980),
format = wNumbFormat(decimals = 0),
tooltips = TRUE),
br(),
pickerInput(
inputId = "column",
label = h5("Choisissez les colonnes où effectuer la recherche:"),
choices = c("Auteur_oeuvre", "Titre", "Auteur_notice", "Article",
"Depouillement", "Details_bibliographiques"),
selected = "Article",
options = list(`actions-box` = TRUE),
multiple = TRUE
),
pickerInput(
inputId = "additional_columns",
label = h5("Choisissez les colonnes à afficher:"),
choices = c("Id", "Auteur_oeuvre", "Titre", "Annee_parution", "Auteur_notice", "Article", "Volume", "Depouillement", "Details_bibliographiques"),
selected = c("Auteur_oeuvre", "Titre", "Article"),
options = list(`actions-box` = TRUE),
multiple = TRUE
),
textInput(
inputId = "motcle",
label = h5("Chaine de caractères à rechercher"),
value = "Montréal"
),
prettySwitch(
inputId = "regex",
label = "Utiliser une expression régulière?",
fill = FALSE,
status = "primary"
),
downloadButton("downloadData", "Exporter le résultat de la table (csv)"),
width = 4,
hr(),
tags$head(tags$link(rel = "stylesheet", href = "https://maxcdn.bootstrapcdn.com/font-awesome/4.7.0/css/font-awesome.min.css")),
h5("Antisèche - expressions régulières"),
tags$a(href = "regex.pdf", target = "_blank",
tags$img(src = "regex.jpg", alt = "Thumbnail", width = "100%")),
hr(),
h5("Accéder aux volumes (pdf)"),
# Add clickable images for each volume
tags$a(href = "https://crilcq.org/dictionnaire-des-oeuvres-litteraires-du-quebec-tome-1-des-origines-a-1900/", target = "_blank",
tags$img(src = "DOLQ_01.jpg", alt = "Volume 1", width = "50%")),
tags$a(href = "https://crilcq.org/dictionnaire-des-oeuvres-litteraires-du-quebec-tome-2-1900-a-1939/", target = "_blank",
tags$img(src = "DOLQ_02.jpg", alt = "Volume 2", width = "50%")),
tags$a(href = "https://crilcq.org/dictionnaire-des-oeuvres-litteraires-du-quebec-tome-3-1940-a-1959/", target = "_blank",
tags$img(src = "DOLQ_03.jpg", alt = "Volume 3", width = "50%")),
tags$a(href = "https://crilcq.org/dictionnaire-des-oeuvres-litteraires-du-quebec-tome-4-1960-1969/", target = "_blank",
tags$img(src = "DOLQ_04.jpg", alt = "Volume 4", width = "50%")),
tags$a(href = "https://crilcq.org/dictionnaire-des-oeuvres-litteraires-du-quebec-tome-5-1970-1975/", target = "_blank",
tags$img(src = "DOLQ_05.jpg", alt = "Volume 5", width = "50%")),
tags$a(href = "https://crilcq.org/dictionnaire-des-oeuvres-litteraires-du-quebec-tome-5-1970-1975/", target = "_blank",
tags$img(src = "DOLQ_06.jpg", alt = "Volume 6", width = "50%")),
),
mainPanel(h3("Distribution chronologique des notices"),
radioButtons(inputId = "dist_type",
label = "Type de distribution:",
choices = list("Distribution brute" = "raw",
"Distribution relative" = "relative"),
selected = "raw"),
numericInput("num_breaks", label = "Nombre d'intervalles:", value = 65, min = 1),
plotOutput("histogram"),
downloadButton("download_graph", "Exporter le graphique"),
downloadButton("download_table", "Exporter les données du graphique"),
h3("Table"),
textOutput("filtered_count"),
DT::dataTableOutput('table'))
)
),
# Second tab: Documentation
tabPanel("Documentation",
uiOutput("readme")
)
)
)
server <- function(input, output) {
reactive_data <- reactive({
filter_data(data, input, input$additional_columns)
})
reactive_data1 <- reactive({
filter_data(data, input)
})
filtered_count <- reactive({
nrow(reactive_data())
})
hist_data <- reactive({
if ("Annee_unique" %in% names(reactive_data1()) && nrow(reactive_data1()) > 0) {
# Ensure the data is numeric
data_numeric <- as.numeric(reactive_data1()[, Annee_unique])
# Remove NA values
data_numeric <- na.omit(data_numeric)
if (length(data_numeric) > 0) {
min_year <- min(data_numeric)
max_year <- max(data_numeric)
breaks_hist <- seq(min_year, max_year, length.out = input$num_breaks + 1)
# Raw counts
raw_counts <- hist(data_numeric, plot=FALSE, breaks=breaks_hist)$counts
# Relative counts
total_counts <- hist(data[data$Annee_unique %in% reactive_data1()[, Annee_unique], Annee_unique], plot=FALSE, breaks=breaks_hist)$counts
relative_counts <- ifelse(total_counts == 0, 0, raw_counts / total_counts)
breaks <- round(seq(min_year, max_year, length.out = length(raw_counts)))
# Return data based on user's selection
if (input$dist_type == "raw") {
return(data.frame(Breaks = breaks, Counts = raw_counts))
} else {
return(data.frame(Breaks = breaks, RelativeCounts = relative_counts))
}
}
}
# Ensure a dataframe is always returned
return(data.frame(Breaks = numeric(0), Counts = numeric(0)))
})
output$filtered_count <- renderText({
paste("Nombre de notices filtrées:", filtered_count())
})
output$table <- DT::renderDataTable({
datatable(reactive_data(), options = list(searching = FALSE),
callback = JS(paste0("
table.on('draw.dt', function() {
var keyword = '", input$motcle, "';
$('td').each(function() {
var content = $(this).html();
var highlighted = content.replace(new RegExp(keyword, 'gi'), function(match) {
return '<span style=\"background-color: yellow;\">' + match + '</span>';
});
$(this).html(highlighted);
});
});
")))
})
output$downloadData <- downloadHandler(
filename = function() {
paste("filtered_data-", Sys.Date(), ".csv", sep="")
},
content = function(file) {
fwrite(reactive_data(), file)
}
)
output$histogram <- renderPlot({
# Check if 'Annee_unique' column exists and has data
if ("Annee_unique" %in% names(reactive_data1()) && nrow(reactive_data1()) > 0) {
min_year <- min(na.omit(reactive_data1()[, Annee_unique]))
max_year <- max(na.omit(reactive_data1()[, Annee_unique]))
breaks_hist <- seq(min_year, max_year, length.out = input$num_breaks + 1)
if (input$dist_type == "raw") {
hist(reactive_data1()[, Annee_unique],
main = "Distribution brute des notices",
xlab = "Année",
ylab = "Nombre",
border = "blue",
col = "lightblue",
breaks = breaks_hist)
} else {
# Compute relative distribution
filtered_counts <- hist(reactive_data1()[, Annee_unique], plot=FALSE, breaks=breaks_hist)$counts
total_counts <- hist(data[data$Annee_unique %in% reactive_data1()[, Annee_unique], Annee_unique], plot=FALSE, breaks=breaks_hist)$counts
relative_counts <- ifelse(total_counts == 0, 0, filtered_counts / total_counts)
# Ensure names.arg matches the length of relative_counts
names_for_bars <- round(seq(min_year, max_year, length.out = length(relative_counts)))
barplot(relative_counts,
main = "Distribution relative des notices",
xlab = "Année",
ylab = "Fréquence relative",
border = "blue",
col = "lightblue",
space = 0,
names.arg = names_for_bars)
}
} else {
plot.new()
title(main = "No data available for the selected criteria")
}
})
output$download_graph <- downloadHandler(
filename = function() {
paste("histogram_graph", Sys.Date(), ".png", sep = "_")
},
content = function(file) {
png(file)
# Check if 'Annee_unique' column exists and has data
if ("Annee_unique" %in% names(reactive_data1()) && nrow(reactive_data1()) > 0) {
min_year <- min(na.omit(reactive_data1()[, Annee_unique]))
max_year <- max(na.omit(reactive_data1()[, Annee_unique]))
breaks_hist <- seq(min_year, max_year, length.out = input$num_breaks + 1)
if (input$dist_type == "raw") {
hist(reactive_data1()[, Annee_unique],
main = "Distribution brute des notices",
xlab = "Année",
ylab = "Nombre",
border = "blue",
col = "lightblue",
breaks = breaks_hist)
} else {
# Compute relative distribution
filtered_counts <- hist(reactive_data1()[, Annee_unique], plot=FALSE, breaks=breaks_hist)$counts
total_counts <- hist(data[data$Annee_unique %in% reactive_data1()[, Annee_unique], Annee_unique], plot=FALSE, breaks=breaks_hist)$counts
relative_counts <- ifelse(total_counts == 0, 0, filtered_counts / total_counts)
# Ensure names.arg matches the length of relative_counts
names_for_bars <- round(seq(min_year, max_year, length.out = length(relative_counts)))
barplot(relative_counts,
main = "Distribution relative des notices",
xlab = "Année",
ylab = "Fréquence relative",
border = "blue",
col = "lightblue",
space = 0,
names.arg = names_for_bars)
}
} else {
plot.new()
title(main = "No data available for the selected criteria")
}
dev.off()
}
)
output$download_table <- downloadHandler(
filename = function() {
paste("histogram_data", Sys.Date(), ".csv", sep = "_")
},
content = function(file) {
write.csv(hist_data(), file, row.names = FALSE)
}
)
output$readme <- renderUI({
# Read the content of the README.md file
readme_content <- readLines("README.md", warn = FALSE)
# Convert the markdown content to HTML for rendering in the Shiny app
HTML(markdown::markdownToHTML(text = readme_content, fragment.only = TRUE))
})
}
shinyApp(ui = ui, server = server) |