File size: 26,485 Bytes
476e0f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
from PIL.Image import Image as PILImage
from torch import Tensor

import PIL.Image
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from einops import rearrange, repeat
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import *
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import *

from extensions.diffusers_diffsplat import UNetMV2DConditionModel


# Copied from https://github.com/camenduru/GRM/blob/master/third_party/generative_models/instant3d.py
def build_gaussians(H: int, W: int, std: float, bg: float = 0.) -> Tensor:
    assert H == W  # TODO: support non-square latents

    x_vals = torch.arange(W)
    y_vals = torch.arange(H)
    x_vals, y_vals = torch.meshgrid(x_vals, y_vals, indexing="ij")
    x_vals = x_vals.unsqueeze(0).unsqueeze(0)
    y_vals = y_vals.unsqueeze(0).unsqueeze(0)
    center_x, center_y = W//2., H//2.

    gaussian = torch.exp(-((x_vals - center_x) ** 2 + (y_vals - center_y) ** 2) / (2 * (std * H) ** 2))  # cf. Instant3D A.5
    gaussian = gaussian / gaussian.max()
    gaussian = (gaussian + bg).clamp(0., 1.)  # gray background for `bg` > 0.
    gaussian = gaussian.repeat(1, 3, 1, 1)
    gaussian = 1. - gaussian    # (1, 3, H, W) in [0, 1]

    gaussian = torch.cat([gaussian, gaussian], dim=-1)
    gaussian = torch.cat([gaussian, gaussian], dim=-2)  # (1, 3, 2H, 2W)
    gaussians = F.interpolate(gaussian, (H, W), mode="bilinear", align_corners=False)
    gaussians = gaussians * 2. - 1.  # (1, 3, H, W) in [-1, 1]
    return gaussians


# Copied from diffusers.pipelines.stable_video_diffusion.pipeline_stable_video_diffusion
def _append_dims(x, target_dims):
    """Appends dimensions to the end of a tensor until it has target_dims dimensions."""
    dims_to_append = target_dims - x.ndim
    if dims_to_append < 0:
        raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
    return x[(...,) + (None,) * dims_to_append]


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline
class StableMVDiffusionPipeline(StableDiffusionPipeline):
    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNetMV2DConditionModel,
        scheduler: KarrasDiffusionSchedulers,
        feature_extractor: CLIPImageProcessor = None,
        image_encoder: CLIPVisionModelWithProjection = None,
        safety_checker: StableDiffusionSafetyChecker = None,
        requires_safety_checker: bool = False,
    ):
        new_config = dict(unet.config)  # save the original unet config

        super().__init__(
            vae,
            text_encoder,
            tokenizer,
            unet,
            scheduler,
            safety_checker,
            feature_extractor,
            image_encoder,
            requires_safety_checker,
        )

        # Not automatically change unet config in `__init__` (for `unet.config.sample_size`)
        self.unet._internal_dict = FrozenDict(new_config)

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
    def get_timesteps_img2img(self, num_inference_steps, strength, device):
        # get the original timestep using init_timestep
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

        t_start = max(num_inference_steps - init_timestep, 0)
        timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
        if hasattr(self.scheduler, "set_begin_index"):
            self.scheduler.set_begin_index(t_start * self.scheduler.order)

        return timesteps, num_inference_steps - t_start

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.prepare_latents
    def prepare_latents_img2img(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None):
        if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
            raise ValueError(
                f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
            )

        image = image.to(device=device, dtype=dtype)

        batch_size = batch_size * num_images_per_prompt

        if image.shape[1] == 4:
            init_latents = image

        else:
            if isinstance(generator, list) and len(generator) != batch_size:
                raise ValueError(
                    f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                    f" size of {batch_size}. Make sure the batch size matches the length of the generators."
                )

            elif isinstance(generator, list):
                if image.shape[0] < batch_size and batch_size % image.shape[0] == 0:
                    image = torch.cat([image] * (batch_size // image.shape[0]), dim=0)
                elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0:
                    raise ValueError(
                        f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} "
                    )

                init_latents = [
                    retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
                    for i in range(batch_size)
                ]
                init_latents = torch.cat(init_latents, dim=0)
            else:
                init_latents = retrieve_latents(self.vae.encode(image), generator=generator)

            init_latents = self.vae.config.scaling_factor * init_latents

        if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
            # expand init_latents for batch_size
            deprecation_message = (
                f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
                " images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
                " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
                " your script to pass as many initial images as text prompts to suppress this warning."
            )
            deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
            additional_image_per_prompt = batch_size // init_latents.shape[0]
            init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
        elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
            raise ValueError(
                f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
            )
        else:
            init_latents = torch.cat([init_latents], dim=0)

        shape = init_latents.shape
        noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)

        # get latents
        init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
        latents = init_latents

        return latents

    def prepare_image_latents(self, image, device, num_images_per_prompt, do_classifier_free_guidance):
        dtype = next(self.vae.parameters()).dtype

        assert isinstance(image, Tensor)
        assert image.ndim == 5 and image.shape[2] == 3

        V_cond = image.shape[1]
        image = rearrange(image, "b v c h w -> (b v) c h w")

        # VAE latent
        image = image.to(device).to(dtype)  # not resize like CLIP preprocessing
        image = image * 2. - 1.
        image_latents = self.vae.encode(image).latent_dist.mode() * self.vae.config.scaling_factor

        image_latents = rearrange(image_latents, "(b v) c h w -> b v c h w", v=V_cond)

        # duplicate image latents for each generation per prompt, using mps friendly method
        image_latents = image_latents.unsqueeze(1)
        bs_latent, _, v, c, h, w = image_latents.shape
        image_latents = image_latents.repeat(1, num_images_per_prompt, 1, 1, 1, 1)
        image_latents = image_latents.view(bs_latent * num_images_per_prompt, v, c, h, w)

        if do_classifier_free_guidance:
            negative_latents = torch.zeros_like(image_latents)

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            image_latents = torch.cat([negative_latents, image_latents])

        return image_latents

    def prepare_plucker(self, plucker, num_images_per_prompt, do_classifier_free_guidance):
        plucker = plucker.to(dtype=self.unet.dtype, device=self.unet.device)

        # duplicate plucker embeddings for each generation per prompt, using mps friendly method
        plucker = plucker.unsqueeze(1)
        bs, _, c, h, w = plucker.shape
        plucker = plucker.repeat(1, num_images_per_prompt, 1, 1, 1)
        plucker = plucker.view(bs * num_images_per_prompt, c, h, w)

        if do_classifier_free_guidance:
            plucker = torch.cat([plucker]*2, dim=0)

        return plucker

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    # Refine for triangle cfg scaling
    @property
    def do_classifier_free_guidance(self):
        if isinstance(self.guidance_scale, (int, float)):
            return self.guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
        return self.guidance_scale.max() > 1 and self.unet.config.time_cond_proj_dim is None

    @torch.no_grad()
    def __call__(
        self,
        image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.Tensor] = None,
        prompt: Union[str, List[str]] = None,

        num_views: int = 4,
        plucker: Optional[torch.FloatTensor] = None,
        triangle_cfg_scaling: bool = False,
        min_guidance_scale: float = 1.0,
        max_guidance_scale: float = 3.0,
        init_std: Optional[float] = 0.,
        init_noise_strength: Optional[float] = 1.,
        init_bg: Optional[float] = 0.,

        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        timesteps: List[int] = None,
        sigmas: List[float] = None,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.Tensor] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        ip_adapter_image: Optional[PipelineImageInput] = None,
        ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        guidance_rescale: float = 0.0,
        clip_skip: Optional[int] = None,
        callback_on_step_end: Optional[
            Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
        ] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs,
    ):
        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )

        if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
            callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

        # 0. Default height and width to unet
        if not height or not width:
            height = (
                self.unet.config.sample_size
                if self._is_unet_config_sample_size_int
                else self.unet.config.sample_size[0]
            )
            width = (
                self.unet.config.sample_size
                if self._is_unet_config_sample_size_int
                else self.unet.config.sample_size[1]
            )
            height, width = height * self.vae_scale_factor, width * self.vae_scale_factor
        # to deal with lora scaling and other possible forward hooks

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            height,
            width,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            ip_adapter_image,
            ip_adapter_image_embeds,
            callback_on_step_end_tensor_inputs,
        )

        self._guidance_scale = guidance_scale if not triangle_cfg_scaling else max_guidance_scale
        self._guidance_rescale = guidance_rescale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
        self._interrupt = False

        V_cond = 0
        if image is not None:
            assert image.ndim == 5  # (B, V_cond, 3, H, W)
            V_cond = image.shape[1]
        self.cross_attention_kwargs.update(num_views=num_views + (V_cond if self.unet.config.view_concat_condition else 0))

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        # 3. Encode input prompt
        lora_scale = (
            self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
        )

        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
            prompt,
            device,
            num_images_per_prompt,
            self.do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=lora_scale,
            clip_skip=self.clip_skip,
        )
        prompt_embeds = repeat(prompt_embeds, "b n d -> (b v) n d", v=num_views + (V_cond if self.unet.config.view_concat_condition else 0))
        if self.do_classifier_free_guidance:
            negative_prompt_embeds = repeat(negative_prompt_embeds, "b n d -> (b v) n d", v=num_views + (V_cond if self.unet.config.view_concat_condition else 0))

        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
        if self.do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

        if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
            image_embeds = self.prepare_ip_adapter_image_embeds(
                ip_adapter_image,
                ip_adapter_image_embeds,
                device,
                batch_size * num_images_per_prompt,
                self.do_classifier_free_guidance,
            )
            image_embeds = repeat(image_embeds, "b n d -> (b v) n d", v=num_views)

        # 3.1 Prepare input image latents
        if self.unet.config.view_concat_condition:
            if image is not None:
                image_latents = self.prepare_image_latents(image, device, num_images_per_prompt, self.do_classifier_free_guidance)
            else:
                image_latents = torch.zeros(
                    (
                        batch_size * num_images_per_prompt,
                        self.unet.config.out_channels,  # `num_channels_latents`; self.unet.config.in_channels
                        int(height) // self.vae_scale_factor,
                        int(width) // self.vae_scale_factor,
                    ),
                    dtype=prompt_embeds.dtype,
                    device=device,
                )
                if V_cond > 0:
                    image_latents = image_latents.unsqueeze(1).repeat(1, V_cond, 1, 1, 1)
                if self.do_classifier_free_guidance:
                    image_latents = torch.cat([image_latents] * 2, dim=0)

        # 3.2 Prepare Plucker embeddings
        if plucker is not None:
            assert plucker.shape[0] == batch_size * (num_views + (V_cond if self.unet.config.view_concat_condition else 0))
            plucker = self.prepare_plucker(plucker, num_images_per_prompt, self.do_classifier_free_guidance)

        # 4. Prepare timesteps
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler, num_inference_steps, device, timesteps, sigmas
        )

        # 5. Prepare latent variables
        num_channels_latents = self.unet.config.out_channels  # self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt * num_views,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )
        # 5.1 Gaussian blobs initialization; cf. Instant3D
        if init_std > 0. and init_noise_strength < 1.:
            row = int(num_views**0.5)
            col = num_views - row
            init_image = build_gaussians(row * height, col * width, init_std, init_bg).to(device=device, dtype=latents.dtype)
            init_image = rearrange(init_image, "b d (r h) (c w) -> (b r c) d h w", r=row, c=col)
            timesteps, num_inference_steps = self.get_timesteps_img2img(num_inference_steps, init_noise_strength, device)
            latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
            latents = self.prepare_latents_img2img(
                init_image,
                latent_timestep,
                batch_size,
                num_images_per_prompt,
                prompt_embeds.dtype,
                device,
                generator,
            )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 6.1 Add image embeds for IP-Adapter
        added_cond_kwargs = (
            {"image_embeds": image_embeds}
            if (ip_adapter_image is not None or ip_adapter_image_embeds is not None)
            else None
        )

        # 6.2 Optionally get Guidance Scale Embedding
        timestep_cond = None
        if self.unet.config.time_cond_proj_dim is not None:
            guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
            timestep_cond = self.get_guidance_scale_embedding(
                guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
            ).to(device=device, dtype=latents.dtype)

        # 6.3 Prepare guidance scale
        if triangle_cfg_scaling:
            # Triangle CFG scaling; the first view is input condition
            guidance_scale = torch.cat([
                torch.linspace(min_guidance_scale, max_guidance_scale, num_views//2 + 1).unsqueeze(0),
                torch.linspace(max_guidance_scale, min_guidance_scale, num_views - (num_views//2 + 1) + 2)[1:-1].unsqueeze(0)
            ], dim=-1)
            guidance_scale = guidance_scale.to(device, latents.dtype)
            guidance_scale = guidance_scale.repeat(batch_size * num_images_per_prompt, 1)
            guidance_scale = _append_dims(guidance_scale, latents.unsqueeze(1).ndim)  # (B, V, 1, 1, 1)
            guidance_scale = rearrange(guidance_scale, "b v c h w -> (b v) c h w")

            self._guidance_scale = guidance_scale

        # 7. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        self._num_timesteps = len(timesteps)
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # Concatenate input latents with others
                latent_model_input = rearrange(latent_model_input, "(b v) c h w -> b v c h w", v=num_views)
                if self.unet.config.view_concat_condition:
                    latent_model_input = torch.cat([image_latents, latent_model_input], dim=1)  # (B, V_in+V_cond, 4, H', W')
                if self.unet.config.input_concat_plucker:
                        plucker = F.interpolate(plucker, size=latent_model_input.shape[-2:], mode="bilinear", align_corners=False)
                        plucker = rearrange(plucker, "(b v) c h w -> b v c h w", v=num_views + (V_cond if self.unet.config.view_concat_condition else 0))
                        latent_model_input = torch.cat([latent_model_input, plucker], dim=2)  # (B, V_in(+V_cond), 4+6, H', W')
                        plucker = rearrange(plucker, "b v c h w -> (b v) c h w")
                if self.unet.config.input_concat_binary_mask:
                    if self.unet.config.view_concat_condition:
                        latent_model_input = torch.cat([
                            torch.cat([latent_model_input[:, :V_cond, ...], torch.zeros_like(latent_model_input[:, :V_cond, 0:1, ...])], dim=2),
                            torch.cat([latent_model_input[:, V_cond:, ...], torch.ones_like(latent_model_input[:, V_cond:, 0:1, ...])], dim=2),
                        ], dim=1)  # (B, V_in+V_cond, 4+6+1, H', W')
                    else:
                        latent_model_input = torch.cat([
                            torch.cat([latent_model_input, torch.ones_like(latent_model_input[:, :, 0:1, ...])], dim=2),
                        ], dim=1)  # (B, V_in, 4+6+1, H', W')
                latent_model_input = rearrange(latent_model_input, "b v c h w -> (b v) c h w")

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    timestep_cond=timestep_cond,
                    cross_attention_kwargs=self.cross_attention_kwargs,
                    added_cond_kwargs=added_cond_kwargs,
                    return_dict=False,
                )[0]

                # Only keep the noise prediction for the latents
                if self.unet.config.view_concat_condition:
                    noise_pred = rearrange(noise_pred, "(b v) c h w -> b v c h w", v=num_views+V_cond)
                    noise_pred = rearrange(noise_pred[:, V_cond:, ...], "b v c h w -> (b v) c h w")

                # perform guidance
                if self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)

                if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

                if XLA_AVAILABLE:
                    xm.mark_step()

        if not output_type == "latent":
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
                0
            ]
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
        else:
            image = latents
            has_nsfw_concept = None

        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
        else:
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)