File size: 24,819 Bytes
476e0f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
from PIL.Image import Image as PILImage
from torch import Tensor

import PIL.Image
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from einops import rearrange, repeat
from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha import *
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import *


# Copied from https://github.com/camenduru/GRM/blob/master/third_party/generative_models/instant3d.py
def build_gaussians(H: int, W: int, std: float, bg: float = 0.) -> Tensor:
    assert H == W  # TODO: support non-square latents

    x_vals = torch.arange(W)
    y_vals = torch.arange(H)
    x_vals, y_vals = torch.meshgrid(x_vals, y_vals, indexing="ij")
    x_vals = x_vals.unsqueeze(0).unsqueeze(0)
    y_vals = y_vals.unsqueeze(0).unsqueeze(0)
    center_x, center_y = W//2., H//2.

    gaussian = torch.exp(-((x_vals - center_x) ** 2 + (y_vals - center_y) ** 2) / (2 * (std * H) ** 2))  # cf. Instant3D A.5
    gaussian = gaussian / gaussian.max()
    gaussian = (gaussian + bg).clamp(0., 1.)  # gray background for `bg` > 0.
    gaussian = gaussian.repeat(1, 3, 1, 1)
    gaussian = 1. - gaussian    # (1, 3, H, W) in [0, 1]

    gaussian = torch.cat([gaussian, gaussian], dim=-1)
    gaussian = torch.cat([gaussian, gaussian], dim=-2)  # (1, 3, 2H, 2W)
    gaussians = F.interpolate(gaussian, (H, W), mode="bilinear", align_corners=False)
    gaussians = gaussians * 2. - 1.  # (1, 3, H, W) in [-1, 1]
    return gaussians


# Copied from diffusers.pipelines.stable_video_diffusion.pipeline_stable_video_diffusion
def _append_dims(x, target_dims):
    """Appends dimensions to the end of a tensor until it has target_dims dimensions."""
    dims_to_append = target_dims - x.ndim
    if dims_to_append < 0:
        raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
    return x[(...,) + (None,) * dims_to_append]


# Copied from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha.PixArtAlphaPipeline
class PixArtAlphaMVPipeline(PixArtAlphaPipeline):
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
    def get_timesteps_img2img(self, num_inference_steps, strength, device):
        # get the original timestep using init_timestep
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

        t_start = max(num_inference_steps - init_timestep, 0)
        timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
        if hasattr(self.scheduler, "set_begin_index"):
            self.scheduler.set_begin_index(t_start * self.scheduler.order)

        return timesteps, num_inference_steps - t_start

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.prepare_latents
    def prepare_latents_img2img(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None):
        if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
            raise ValueError(
                f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
            )

        image = image.to(device=device, dtype=dtype)

        batch_size = batch_size * num_images_per_prompt

        if image.shape[1] == 4:
            init_latents = image

        else:
            if isinstance(generator, list) and len(generator) != batch_size:
                raise ValueError(
                    f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                    f" size of {batch_size}. Make sure the batch size matches the length of the generators."
                )

            elif isinstance(generator, list):
                if image.shape[0] < batch_size and batch_size % image.shape[0] == 0:
                    image = torch.cat([image] * (batch_size // image.shape[0]), dim=0)
                elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0:
                    raise ValueError(
                        f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} "
                    )

                init_latents = [
                    retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
                    for i in range(batch_size)
                ]
                init_latents = torch.cat(init_latents, dim=0)
            else:
                init_latents = retrieve_latents(self.vae.encode(image), generator=generator)

            init_latents = self.vae.config.scaling_factor * init_latents

        if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
            # expand init_latents for batch_size
            deprecation_message = (
                f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
                " images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
                " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
                " your script to pass as many initial images as text prompts to suppress this warning."
            )
            deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
            additional_image_per_prompt = batch_size // init_latents.shape[0]
            init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
        elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
            raise ValueError(
                f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
            )
        else:
            init_latents = torch.cat([init_latents], dim=0)

        shape = init_latents.shape
        noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)

        # get latents
        init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
        latents = init_latents

        return latents

    def prepare_image_latents(self, image, device, num_images_per_prompt, do_classifier_free_guidance):
        dtype = next(self.vae.parameters()).dtype

        assert isinstance(image, Tensor)
        assert image.ndim == 5 and image.shape[2] == 3

        V_cond = image.shape[1]
        image = rearrange(image, "b v c h w -> (b v) c h w")

        # VAE latent
        image = image.to(device).to(dtype)  # not resize like CLIP preprocessing
        image = image * 2. - 1.
        image_latents = self.vae.encode(image).latent_dist.mode() * self.vae.config.scaling_factor

        image_latents = rearrange(image_latents, "(b v) c h w -> b v c h w", v=V_cond)

        # duplicate image latents for each generation per prompt, using mps friendly method
        image_latents = image_latents.unsqueeze(1)
        bs_latent, _, v, c, h, w = image_latents.shape
        image_latents = image_latents.repeat(1, num_images_per_prompt, 1, 1, 1, 1)
        image_latents = image_latents.view(bs_latent * num_images_per_prompt, v, c, h, w)

        if do_classifier_free_guidance:
            negative_latents = torch.zeros_like(image_latents)

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            image_latents = torch.cat([negative_latents, image_latents])

        return image_latents

    def prepare_plucker(self, plucker, num_images_per_prompt, do_classifier_free_guidance):
        plucker = plucker.to(dtype=self.transformer.dtype, device=self.transformer.device)

        # duplicate plucker embeddings for each generation per prompt, using mps friendly method
        plucker = plucker.unsqueeze(1)
        bs, _, c, h, w = plucker.shape
        plucker = plucker.repeat(1, num_images_per_prompt, 1, 1, 1)
        plucker = plucker.view(bs * num_images_per_prompt, c, h, w)

        if do_classifier_free_guidance:
            plucker = torch.cat([plucker]*2, dim=0)

        return plucker

    @torch.no_grad()
    def __call__(
        self,
        image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.Tensor] = None,
        prompt: Union[str, List[str]] = None,

        num_views: int = 4,
        plucker: Optional[torch.FloatTensor] = None,
        triangle_cfg_scaling: bool = False,
        min_guidance_scale: float = 1.0,
        max_guidance_scale: float = 3.0,
        init_std: Optional[float] = 0.,
        init_noise_strength: Optional[float] = 1.,
        init_bg: Optional[float] = 0.,

        negative_prompt: Optional[str] = None,
        num_inference_steps: int = 20,
        timesteps: List[int] = None,
        sigmas: List[float] = None,
        guidance_scale: float = 4.5,
        num_images_per_prompt: Optional[int] = 1,
        height: Optional[int] = None,
        width: Optional[int] = None,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.Tensor] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        prompt_attention_mask: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_attention_mask: Optional[torch.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
        callback_steps: int = 1,
        clean_caption: bool = True,
        use_resolution_binning: bool = False,  # `True` for original PixArt
        max_sequence_length: int = 120,
        **kwargs,
    ) -> Union[ImagePipelineOutput, Tuple]:
        if "mask_feature" in kwargs:
            deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
            deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
        # 1. Check inputs. Raise error if not correct
        height = height or self.transformer.config.sample_size * self.vae_scale_factor
        width = width or self.transformer.config.sample_size * self.vae_scale_factor
        if use_resolution_binning:
            if self.transformer.config.sample_size == 128:
                aspect_ratio_bin = ASPECT_RATIO_1024_BIN
            elif self.transformer.config.sample_size == 64:
                aspect_ratio_bin = ASPECT_RATIO_512_BIN
            elif self.transformer.config.sample_size == 32:
                aspect_ratio_bin = ASPECT_RATIO_256_BIN
            else:
                raise ValueError("Invalid sample size")
            orig_height, orig_width = height, width
            height, width = self.image_processor.classify_height_width_bin(height, width, ratios=aspect_ratio_bin)

        self.check_inputs(
            prompt,
            height,
            width,
            negative_prompt,
            callback_steps,
            prompt_embeds,
            negative_prompt_embeds,
            prompt_attention_mask,
            negative_prompt_attention_mask,
        )

        V_cond = 0
        if image is not None:
            assert image.ndim == 5  # (B, V_cond, 3, H, W)
            V_cond = image.shape[1]
        cross_attention_kwargs = {"num_views": num_views + (V_cond if self.transformer.config.view_concat_condition else 0)}

        # 2. Default height and width to transformer
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = (guidance_scale if not triangle_cfg_scaling else max_guidance_scale) > 1.0

        # 3. Encode input prompt
        (
            prompt_embeds,
            prompt_attention_mask,
            negative_prompt_embeds,
            negative_prompt_attention_mask,
        ) = self.encode_prompt(
            prompt,
            do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            num_images_per_prompt=num_images_per_prompt,
            device=device,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            prompt_attention_mask=prompt_attention_mask,
            negative_prompt_attention_mask=negative_prompt_attention_mask,
            clean_caption=clean_caption,
            max_sequence_length=max_sequence_length,
        )
        prompt_embeds = repeat(prompt_embeds, "b n d -> (b v) n d", v=num_views + (V_cond if self.transformer.config.view_concat_condition else 0))
        prompt_attention_mask = repeat(prompt_attention_mask, "b n -> (b v) n", v=num_views + (V_cond if self.transformer.config.view_concat_condition else 0))
        if do_classifier_free_guidance:
            negative_prompt_embeds = repeat(negative_prompt_embeds, "b n d -> (b v) n d", v=num_views + (V_cond if self.transformer.config.view_concat_condition else 0))
            negative_prompt_attention_mask = repeat(negative_prompt_attention_mask, "b n -> (b v) n", v=num_views + (V_cond if self.transformer.config.view_concat_condition else 0))

        if do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
            prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)

        # 3.1 Prepare input image latents
        if self.transformer.config.view_concat_condition:
            if image is not None:
                image_latents = self.prepare_image_latents(image, device, num_images_per_prompt, do_classifier_free_guidance)
            else:
                image_latents = torch.zeros(
                    (
                        batch_size * num_images_per_prompt,
                        self.transformer.config.out_channels // 2,  # `num_channels_latents`; self.transformer.config.in_channels
                        int(height) // self.vae_scale_factor,
                        int(width) // self.vae_scale_factor,
                    ),
                    dtype=prompt_embeds.dtype,
                    device=device,
                )
                if V_cond > 0:
                    image_latents = image_latents.unsqueeze(1).repeat(1, V_cond, 1, 1, 1)
                if do_classifier_free_guidance:
                    image_latents = torch.cat([image_latents] * 2, dim=0)

        # 3.2 Prepare Plucker embeddings
        if plucker is not None:
            assert plucker.shape[0] == batch_size * (num_views + (V_cond if self.transformer.config.view_concat_condition else 0))
            plucker = self.prepare_plucker(plucker, num_images_per_prompt, do_classifier_free_guidance)

        # 4. Prepare timesteps
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler, num_inference_steps, device, timesteps, sigmas
        )

        # 5. Prepare latents.
        latent_channels = self.transformer.config.out_channels // 2  # self.transformer.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt * num_views,
            latent_channels,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )
        # 5.1 Gaussian blobs initialization; cf. Instant3D
        if init_std > 0. and init_noise_strength < 1.:
            row = int(num_views**0.5)
            col = num_views - row
            init_image = build_gaussians(row * height, col * width, init_std, init_bg).to(device=device, dtype=latents.dtype)
            init_image = rearrange(init_image, "b d (r h) (c w) -> (b r c) d h w", r=row, c=col)
            timesteps, num_inference_steps = self.get_timesteps_img2img(num_inference_steps, init_noise_strength, device)
            latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
            latents = self.prepare_latents_img2img(
                init_image,
                latent_timestep,
                batch_size,
                num_images_per_prompt,
                prompt_embeds.dtype,
                device,
                generator,
            )

        # 5.2 Prepare guidance scale
        if triangle_cfg_scaling:
            # Triangle CFG scaling; the first view is input condition
            guidance_scale = torch.cat([
                torch.linspace(min_guidance_scale, max_guidance_scale, num_views//2 + 1).unsqueeze(0),
                torch.linspace(max_guidance_scale, min_guidance_scale, num_views - (num_views//2 + 1) + 2)[1:-1].unsqueeze(0)
            ], dim=-1)
            guidance_scale = guidance_scale.to(device, latents.dtype)
            guidance_scale = guidance_scale.repeat(batch_size * num_images_per_prompt, 1)
            guidance_scale = _append_dims(guidance_scale, latents.unsqueeze(1).ndim)  # (B, V, 1, 1, 1)
            guidance_scale = rearrange(guidance_scale, "b v c h w -> (b v) c h w")

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 6.1 Prepare micro-conditions.
        added_cond_kwargs = {"resolution": None, "aspect_ratio": None}
        if self.transformer.config.sample_size == 128:
            resolution = torch.tensor([height, width]).repeat(batch_size * num_images_per_prompt, 1)
            aspect_ratio = torch.tensor([float(height / width)]).repeat(batch_size * num_images_per_prompt, 1)
            resolution = resolution.to(dtype=prompt_embeds.dtype, device=device)
            aspect_ratio = aspect_ratio.to(dtype=prompt_embeds.dtype, device=device)

            if do_classifier_free_guidance:
                resolution = torch.cat([resolution, resolution], dim=0)
                aspect_ratio = torch.cat([aspect_ratio, aspect_ratio], dim=0)

            added_cond_kwargs = {"resolution": resolution, "aspect_ratio": aspect_ratio}

        # 7. Denoising loop
        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)

        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # Concatenate input latents with others
                latent_model_input = rearrange(latent_model_input, "(b v) c h w -> b v c h w", v=num_views)
                if self.transformer.config.view_concat_condition:
                    latent_model_input = torch.cat([image_latents, latent_model_input], dim=1)  # (B, V_in+V_cond, 4, H', W')
                if self.transformer.config.input_concat_plucker:
                        plucker = F.interpolate(plucker, size=latent_model_input.shape[-2:], mode="bilinear", align_corners=False)
                        plucker = rearrange(plucker, "(b v) c h w -> b v c h w", v=num_views + (V_cond if self.transformer.config.view_concat_condition else 0))
                        latent_model_input = torch.cat([latent_model_input, plucker], dim=2)  # (B, V_in(+V_cond), 4+6, H', W')
                        plucker = rearrange(plucker, "b v c h w -> (b v) c h w")
                if self.transformer.config.input_concat_binary_mask:
                    if self.transformer.config.view_concat_condition:
                        latent_model_input = torch.cat([
                            torch.cat([latent_model_input[:, :V_cond, ...], torch.zeros_like(latent_model_input[:, :V_cond, 0:1, ...])], dim=2),
                            torch.cat([latent_model_input[:, V_cond:, ...], torch.ones_like(latent_model_input[:, V_cond:, 0:1, ...])], dim=2),
                        ], dim=1)  # (B, V_in+V_cond, 4+6+1, H', W')
                    else:
                        latent_model_input = torch.cat([
                            torch.cat([latent_model_input, torch.ones_like(latent_model_input[:, :, 0:1, ...])], dim=2),
                        ], dim=1)  # (B, V_in, 4+6+1, H', W')
                latent_model_input = rearrange(latent_model_input, "b v c h w -> (b v) c h w")

                current_timestep = t
                if not torch.is_tensor(current_timestep):
                    # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
                    # This would be a good case for the `match` statement (Python 3.10+)
                    is_mps = latent_model_input.device.type == "mps"
                    if isinstance(current_timestep, float):
                        dtype = torch.float32 if is_mps else torch.float64
                    else:
                        dtype = torch.int32 if is_mps else torch.int64
                    current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device)
                elif len(current_timestep.shape) == 0:
                    current_timestep = current_timestep[None].to(latent_model_input.device)
                # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
                current_timestep = current_timestep.expand(latent_model_input.shape[0])

                # predict noise model_output
                noise_pred = self.transformer(
                    latent_model_input,
                    encoder_hidden_states=prompt_embeds,
                    encoder_attention_mask=prompt_attention_mask,
                    timestep=current_timestep,
                    added_cond_kwargs=added_cond_kwargs,
                    cross_attention_kwargs=cross_attention_kwargs,
                    return_dict=False,
                )[0]

                # Only keep the noise prediction for the latents
                if self.transformer.config.view_concat_condition:
                    noise_pred = rearrange(noise_pred, "(b v) c h w -> b v c h w", v=num_views+V_cond)
                    noise_pred = rearrange(noise_pred[:, V_cond:, ...], "b v c h w -> (b v) c h w")

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # learned sigma
                if self.transformer.config.out_channels // 2 == latent_channels:
                    noise_pred = noise_pred.chunk(2, dim=1)[0]
                else:
                    noise_pred = noise_pred

                # compute previous image: x_t -> x_t-1
                if num_inference_steps == 1:
                    # For DMD one step sampling: https://arxiv.org/abs/2311.18828
                    latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).pred_original_sample
                else:
                    latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

        if not output_type == "latent":
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
            if use_resolution_binning:
                image = self.image_processor.resize_and_crop_tensor(image, orig_width, orig_height)
        else:
            image = latents

        if not output_type == "latent":
            image = self.image_processor.postprocess(image, output_type=output_type)

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)