File size: 8,766 Bytes
c05de71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
"""
Core chatbot implementation for document question answering.
"""
import logging
import os
import time
from typing import Optional, Dict, Any, List

from tqdm import tqdm
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings, StorageContext, load_index_from_storage
from llama_index.llms.anthropic import Anthropic
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.callbacks import CallbackManager, LlamaDebugHandler

import config

# Configure logging
logger = logging.getLogger(__name__)

class Chatbot:
    """Chatbot for document question answering using LlamaIndex."""
    
    def __init__(self, config_dict: Optional[Dict[str, Any]] = None):
        """Initialize the chatbot with configuration.
        
        Args:
            config_dict: Optional configuration dictionary. If not provided,
                         configuration is loaded from environment variables.
        """
        # Set up basic variables and load configuration
        self.config = config_dict or config.get_chatbot_config()
        self.api_key = self._get_api_key()
        self.index = None
        self.query_engine = None
        self.llm = None
        self.embed_model = None
        
        # Set up debugging tools to help track any issues
        self.debug_handler = LlamaDebugHandler(print_trace_on_end=True)
        self.callback_manager = CallbackManager([self.debug_handler])
        
        # Set up all the components needed for the chatbot
        self._initialize_components()
        
    def _get_api_key(self) -> str:
        """Get API key from environment or config.
        
        Returns:
            API key as string
            
        Raises:
            ValueError: If API key is not found
        """
        api_key = config.ANTHROPIC_API_KEY or self.config.get("api_key")
        if not api_key:
            raise ValueError("API key not found in environment or config")
        return api_key
    
    def _initialize_components(self):
        """Initialize all components with proper error handling.
        
        Sets up the LLM, embedding model, and other settings.
        
        Raises:
            Exception: If component initialization fails
        """
        try:
            # Set up the language model (Claude) with our settings
            logger.info("Setting up Claude language model...")
            self.llm = Anthropic(
                api_key=self.api_key,
                model=self.config.get("model", config.LLM_MODEL),
                temperature=self.config.get("temperature", config.LLM_TEMPERATURE),
                max_tokens=self.config.get("max_tokens", config.LLM_MAX_TOKENS)
            )
            
            # Set up the model that converts text into numbers (embeddings)
            logger.info("Setting up text embedding model...")
            self.embed_model = HuggingFaceEmbedding(
                model_name=self.config.get("embedding_model", config.EMBEDDING_MODEL),
                device=self.config.get("device", config.EMBEDDING_DEVICE),
                embed_batch_size=self.config.get("embed_batch_size", config.EMBEDDING_BATCH_SIZE)
            )
            
            # Configure all the settings for the chatbot
            logger.info("Configuring chatbot settings...")
            Settings.embed_model = self.embed_model
            Settings.text_splitter = SentenceSplitter(
                chunk_size=self.config.get("chunk_size", config.CHUNK_SIZE),
                chunk_overlap=self.config.get("chunk_overlap", config.CHUNK_OVERLAP),
                paragraph_separator="\n\n"
            )
            Settings.llm = self.llm
            Settings.callback_manager = self.callback_manager
            
            logger.info("Components initialized successfully")
            
        except Exception as e:
            logger.error(f"Error initializing components: {e}")
            raise
    
    def load_documents(self, data_dir: str = None) -> List:
        """Load documents with retry logic.
        
        Args:
            data_dir: Directory containing documents to load. If None, uses default.
            
        Returns:
            List of loaded documents
            
        Raises:
            Exception: If document loading fails after retries
        """
        # Try to load documents up to 3 times if there's an error
        max_retries = 3
        retry_delay = 1
        data_dir = data_dir or config.DATA_DIR
        
        for attempt in range(max_retries):
            try:
                logger.info(f"Loading documents from {data_dir}...")
                documents = SimpleDirectoryReader(data_dir).load_data()
                logger.info(f"Loaded {len(documents)} documents")
                return documents
            except Exception as e:
                if attempt < max_retries - 1:
                    logger.warning(f"Attempt {attempt + 1} failed: {e}. Retrying in {retry_delay} seconds...")
                    time.sleep(retry_delay)
                else:
                    logger.error(f"Failed to load documents after {max_retries} attempts: {e}")
                    raise
    
    def create_index(self, documents, index_dir: str = None):
        """Create index with error handling.
        
        Args:
            documents: Documents to index
            index_dir: Directory to store the index. If None, uses default.
            
        Raises:
            Exception: If index creation fails
        """
        index_dir = index_dir or config.INDEX_DIR
        try:
            # Check if index already exists
            if os.path.exists(os.path.join(index_dir, "index_store.json")):
                logger.info("Loading existing index...")
                storage_context = StorageContext.from_defaults(persist_dir=index_dir)
                self.index = load_index_from_storage(storage_context)
                logger.info("Index loaded successfully")
                return
            
            # Create a new index if none exists
            logger.info("Creating new index...")
            with tqdm(total=1, desc="Creating searchable index") as pbar:
                self.index = VectorStoreIndex.from_documents(documents)
                # Save the index
                self.index.storage_context.persist(persist_dir=index_dir)
                pbar.update(1)
            logger.info("Index created and saved successfully")
        except Exception as e:
            logger.error(f"Error creating/loading index: {e}")
            raise
    
    def initialize_query_engine(self):
        """Initialize query engine with error handling.
        
        Sets up the query engine from the index.
        
        Raises:
            Exception: If query engine initialization fails
        """
        try:
            # Set up the system that will handle questions
            logger.info("Initializing query engine...")
            self.query_engine = self.index.as_query_engine()
            logger.info("Query engine initialized successfully")
        except Exception as e:
            logger.error(f"Error initializing query engine: {e}")
            raise
    
    def query(self, query_text: str) -> str:
        """Execute a query with error handling and retries.
        
        Args:
            query_text: The question to answer
            
        Returns:
            Response as string
            
        Raises:
            Exception: If query fails after retries
        """
        # Try to answer questions up to 3 times if there's an error
        max_retries = 3
        retry_delay = 1
        
        for attempt in range(max_retries):
            try:
                logger.info(f"Executing query: {query_text}")
                response = self.query_engine.query(query_text)
                logger.info("Query executed successfully")
                return str(response)
            except Exception as e:
                if attempt < max_retries - 1:
                    logger.warning(f"Attempt {attempt + 1} failed: {e}. Retrying in {retry_delay} seconds...")
                    time.sleep(retry_delay)
                else:
                    logger.error(f"Failed to execute query after {max_retries} attempts: {e}")
                    raise
    
    def cleanup(self):
        """Clean up resources.
        
        Performs any necessary cleanup operations.
        """
        try:
            # Clean up any resources we used
            logger.info("Cleaning up resources...")
            logger.info("Cleanup completed successfully")
        except Exception as e:
            logger.error(f"Error during cleanup: {e}")