Spaces:
Running
Running
File size: 17,792 Bytes
c05de71 69f6777 c05de71 7ac7d7d c05de71 7ac7d7d 69f6777 7ac7d7d bc0bab3 7ac7d7d bc0bab3 7ac7d7d 374d9e2 7ac7d7d 69f6777 c05de71 7ac7d7d c05de71 7ac7d7d c05de71 69f6777 c05de71 7ac7d7d c05de71 7ac7d7d c05de71 7ac7d7d c05de71 7ac7d7d c05de71 7ac7d7d c05de71 7ac7d7d c05de71 7ac7d7d c05de71 69f6777 c05de71 69f6777 c05de71 7ac7d7d c05de71 69f6777 c05de71 69f6777 c05de71 69f6777 c05de71 69f6777 c05de71 7ac7d7d c05de71 7ac7d7d c05de71 69f6777 c05de71 69f6777 c05de71 7ac7d7d 69f6777 7ac7d7d c05de71 7ac7d7d c05de71 7ac7d7d c05de71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.llms.anthropic import Anthropic
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.callbacks import CallbackManager, LlamaDebugHandler
from llama_index.core import StorageContext, load_index_from_storage
from llama_index.core.memory import ChatMemoryBuffer
import logging
import os
from dotenv import load_dotenv
import time
from typing import Optional, Dict, Any, List
from tqdm import tqdm
import streamlit as st
# Set up logging to track what the chatbot is doing
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Disable tokenizer parallelism warnings
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Create a directory for storing the index
INDEX_DIR = "index"
if not os.path.exists(INDEX_DIR):
os.makedirs(INDEX_DIR)
# Cache LLM model to be reused across sessions
@st.cache_resource
def load_llm_model(api_key, model_name="claude-3-7-sonnet-20250219", temperature=0.1, max_tokens=2048):
"""Load Language Model once and reuse across all sessions."""
logger.info("Loading Claude language model (cached)...")
return Anthropic(
api_key=api_key,
model=model_name,
temperature=temperature,
max_tokens=max_tokens,
timeout=30.0 # Set a 30-second timeout for API requests
)
# Cache embedding model to be reused across sessions
@st.cache_resource
def load_embedding_model(model_name="sentence-transformers/all-MiniLM-L6-v2", device="cpu", batch_size=8):
"""Load Embedding Model once and reuse across all sessions."""
logger.info("Loading text embedding model (cached)...")
# Try to get HuggingFace token from Streamlit secrets if available
try:
hf_token = st.secrets.get("HUGGINGFACE_TOKEN", None)
except:
hf_token = None
logger.info("No HuggingFace token found in secrets, proceeding without authentication")
return HuggingFaceEmbedding(
model_name=model_name,
device=device,
embed_batch_size=batch_size,
token=hf_token # Will be None if not found in secrets
)
# Cache the index loading/creation to be shared across sessions
@st.cache_resource
def load_or_create_index(_documents=None, data_dir="data"):
"""Load existing index or create new one, shared across sessions."""
try:
# Check if index already exists
if os.path.exists(os.path.join(INDEX_DIR, "index.json")) and _documents is None:
logger.info("Loading existing index (cached)...")
storage_context = StorageContext.from_defaults(persist_dir=INDEX_DIR)
index = load_index_from_storage(storage_context)
logger.info("Index loaded successfully")
return index
# Create a new index
logger.info("Creating new index (cached)...")
# If documents weren't provided, load them
if _documents is None:
documents = SimpleDirectoryReader(data_dir).load_data()
else:
documents = _documents
# Ensure we're using HuggingFace embeddings explicitly before creating the index
embed_model = load_embedding_model()
Settings.embed_model = embed_model
with tqdm(total=1, desc="Creating searchable index") as pbar:
index = VectorStoreIndex.from_documents(documents)
# Save the index
index.storage_context.persist(persist_dir=INDEX_DIR)
pbar.update(1)
logger.info("Index created and saved successfully")
return index
except Exception as e:
logger.error(f"Error in load_or_create_index: {e}")
raise
# Get a thread-safe callback manager (cached for reuse)
@st.cache_resource
def get_callback_manager(debug_mode=True):
"""Get the appropriate callback manager based on environment."""
if debug_mode:
debug_handler = LlamaDebugHandler(print_trace_on_end=True)
return CallbackManager([debug_handler])
else:
# Use a lightweight callback handler for production
return CallbackManager([])
# Cache memory buffer for chat history
@st.cache_resource
def get_chat_memory(token_limit=1500):
"""Get a chat memory buffer with a token limit to manage context window."""
logger.info("Creating chat memory buffer...")
return ChatMemoryBuffer.from_defaults(token_limit=token_limit)
class Chatbot:
def __init__(self, config: Optional[Dict[str, Any]] = None, llm=None, embed_model=None, index=None):
"""Initialize the chatbot with configuration."""
# Set up basic variables and load configuration
self.config = config or {}
self.api_key = self._get_api_key()
# Use provided resources or load them using cached functions
self.llm = llm or load_llm_model(
self.api_key,
self.config.get("model", "claude-3-7-sonnet-20250219"),
self.config.get("temperature", 0.1),
self.config.get("max_tokens", 2048)
)
self.embed_model = embed_model or load_embedding_model(
self.config.get("embedding_model", "sentence-transformers/all-MiniLM-L6-v2"),
self.config.get("device", "cpu"),
self.config.get("embed_batch_size", 8)
)
self.index = index
self.query_engine = None
self.chat_engine = None
self.chat_memory = get_chat_memory()
# Set up debugging tools to help track any issues
self.callback_manager = get_callback_manager()
# Configure settings
self._configure_settings()
def _get_api_key(self) -> str:
"""Get API key from environment or config."""
# Load the API key from environment variables or config file
load_dotenv()
api_key = os.getenv("ANTHROPIC_API_KEY") or self.config.get("api_key")
if not api_key:
raise ValueError("API key not found in environment or config")
return api_key
def _configure_settings(self):
"""Configure all settings for the chatbot."""
try:
# Configure all the settings for the chatbot
logger.info("Configuring chatbot settings...")
Settings.embed_model = self.embed_model
Settings.text_splitter = SentenceSplitter(
chunk_size=self.config.get("chunk_size", 1024),
chunk_overlap=self.config.get("chunk_overlap", 100),
paragraph_separator="\n\n"
)
Settings.llm = self.llm
Settings.callback_manager = self.callback_manager
logger.info("Components initialized successfully")
except Exception as e:
logger.error(f"Error configuring settings: {e}")
raise
def load_documents(self, data_dir: str = "data"):
"""Load documents with retry logic."""
# Try to load documents up to 3 times if there's an error
max_retries = 3
retry_delay = 1
for attempt in range(max_retries):
try:
logger.info(f"Loading documents from {data_dir}...")
documents = SimpleDirectoryReader(data_dir).load_data()
logger.info(f"Loaded {len(documents)} documents")
return documents
except Exception as e:
if attempt < max_retries - 1:
logger.warning(f"Attempt {attempt + 1} failed: {e}. Retrying in {retry_delay} seconds...")
time.sleep(retry_delay)
else:
logger.error(f"Failed to load documents after {max_retries} attempts: {e}")
raise
def create_index(self, documents):
"""Create or load index with error handling."""
try:
if self.index is None:
self.index = load_or_create_index(documents)
return self.index
except Exception as e:
logger.error(f"Error creating/loading index: {e}")
raise
def update_index(self, new_documents: List):
"""Update existing index with new documents without rebuilding."""
try:
if self.index is None:
logger.warning("No existing index found. Creating new index instead.")
self.create_index(new_documents)
return
logger.info(f"Updating index with {len(new_documents)} new documents...")
with tqdm(total=1, desc="Updating searchable index") as pbar:
# Insert the new documents into the existing index
for doc in new_documents:
self.index.insert(doc)
# Persist the updated index
self.index.storage_context.persist(persist_dir=INDEX_DIR)
pbar.update(1)
logger.info("Index updated and saved successfully")
# Reinitialize engines with updated index
self.initialize_query_engine()
self.initialize_chat_engine()
except Exception as e:
logger.error(f"Error updating index: {e}")
raise
def initialize_query_engine(self):
"""Initialize query engine with error handling."""
try:
# Set up the system that will handle questions
logger.info("Initializing query engine...")
if self.index is None:
# Load or create index if needed
documents = self.load_documents()
self.create_index(documents)
self.query_engine = self.index.as_query_engine()
logger.info("Query engine initialized successfully")
except Exception as e:
logger.error(f"Error initializing query engine: {e}")
raise
def initialize_chat_engine(self):
"""Initialize chat engine with memory for conversation context."""
try:
# Set up the chat engine with memory for conversations
logger.info("Initializing chat engine...")
if self.index is None:
# Load or create index if needed
documents = self.load_documents()
self.create_index(documents)
# Create chat engine with the memory buffer for context
self.chat_engine = self.index.as_chat_engine(
chat_mode="context", # Simpler mode that's more stable
memory=self.chat_memory,
similarity_top_k=3, # Retrieve fewer but more relevant documents
system_prompt=(
"You are a helpful assistant that answers questions based on the provided documents. "
"When answering follow-up questions, use both the conversation history and the retrieved documents. "
"If you don't know the answer, say 'I don't have information about that in my documents.'"
)
)
logger.info("Chat engine initialized successfully")
except Exception as e:
logger.error(f"Error initializing chat engine: {e}")
raise
def query(self, query_text: str) -> str:
"""Execute a query with error handling and retries."""
# Try to answer questions up to 3 times if there's an error
max_retries = 3
retry_delay = 1
# Special handling for very short follow-up queries
if len(query_text.strip().split()) <= 3 and self.chat_memory:
logger.info(f"Detected potential follow-up question: {query_text}")
# Check if the memory has messages (by safely checking memory attributes)
has_messages = False
try:
# Check if memory has chat history in different possible ways
if hasattr(self.chat_memory, "chat_history") and self.chat_memory.chat_history:
has_messages = True
elif hasattr(self.chat_memory, "messages") and self.chat_memory.messages:
has_messages = True
except Exception as e:
logger.warning(f"Error checking chat memory: {e}")
# Only expand generic follow-ups if there's chat history
if has_messages:
# Check if it's a very generic follow-up like "tell me more" or "continue"
generic_followups = ["tell me more", "more", "continue", "go on", "elaborate", "explain more"]
if query_text.lower() in generic_followups or query_text.lower().strip() in generic_followups:
expanded_query = "Please provide more information about the topic we were just discussing."
logger.info(f"Expanded generic follow-up to: {expanded_query}")
query_text = expanded_query
for attempt in range(max_retries):
try:
logger.info(f"Executing query: {query_text}")
print("\nThinking...", end="", flush=True)
# Use chat engine if initialized, otherwise use query engine
if self.chat_engine is not None:
# Make sure we're prioritizing document retrieval
logger.info("Using chat engine with document retrieval")
# Get response from chat engine
response = self.chat_engine.chat(query_text)
# Log sources if available
if hasattr(response, 'source_nodes') and response.source_nodes:
logger.info(f"Retrieved {len(response.source_nodes)} source nodes for context")
else:
logger.warning("No source nodes retrieved for this query")
else:
# Fallback to query engine
logger.info("Using query engine for document retrieval")
response = self.query_engine.query(query_text)
print(" Done!")
logger.info("Query executed successfully")
return str(response)
except Exception as e:
if attempt < max_retries - 1:
logger.warning(f"Attempt {attempt + 1} failed: {e}. Retrying in {retry_delay} seconds...")
time.sleep(retry_delay)
else:
logger.error(f"Failed to execute query after {max_retries} attempts: {e}")
# Provide a graceful error message to the user
return "I'm having trouble processing your request. Could you please rephrase your question or ask something else?"
def reset_chat_history(self):
"""Reset the chat history to start a new conversation."""
logger.info("Resetting chat history")
self.chat_memory.reset()
if self.chat_engine is not None:
# Reinitialize the chat engine with a fresh memory
self.initialize_chat_engine()
def cleanup(self):
"""Clean up resources."""
try:
# Clean up any resources we used
logger.info("Cleaning up resources...")
# Nothing to clean up since resources are managed by st.cache_resource
logger.info("Cleanup completed successfully")
except Exception as e:
logger.error(f"Error during cleanup: {e}")
# For CLI usage
def main():
# Set up all the configuration settings for the chatbot
config = {
"model": "claude-3-7-sonnet-20250219",
"temperature": 0.1,
"max_tokens": 2048, # Allow for longer responses
"embedding_model": "sentence-transformers/all-MiniLM-L6-v2",
"device": "cpu",
"embed_batch_size": 8,
"chunk_size": 1024,
"chunk_overlap": 100
}
chatbot = None
try:
# Create and set up the chatbot
print("\nInitializing chatbot...")
chatbot = Chatbot(config)
# Load the documents we want to analyze
documents = chatbot.load_documents()
# Create a searchable index from the documents
chatbot.create_index(documents)
# Set up the system that will handle questions
chatbot.initialize_chat_engine()
print("\nChatbot is ready! You can ask questions about your documents.")
print("Type 'exit' to quit or 'clear' to reset chat history.")
print("-" * 50)
while True:
# Get user input
question = input("\nYour question: ").strip()
# Check if user wants to exit
if question.lower() in ['exit', 'quit', 'bye']:
print("\nGoodbye!")
break
# Check if user wants to clear chat history
if question.lower() == 'clear':
chatbot.reset_chat_history()
print("\nChat history has been cleared.")
continue
# Get the answer
answer = chatbot.query(question)
print("\nAnswer:", answer)
except KeyboardInterrupt:
print("\nExiting...")
except Exception as e:
print(f"\nError: {e}")
finally:
if chatbot:
chatbot.cleanup()
if __name__ == "__main__":
main() |