File size: 10,519 Bytes
92f0e98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import torch, multiprocessing, itertools, os, shutil, PIL, argparse, numpy
from collections import OrderedDict
from numbers import Number
from torch.nn.functional import mse_loss, l1_loss
from . import pbar
from . import zdataset
from . import proggan, customnet, parallelfolder
from . import encoder_net, encoder_loss, setting
from torchvision import transforms, models
from torchvision.models.vgg import model_urls
from .pidfile import exit_if_job_done, mark_job_done
from . import nethook
from .pidfile import exit_if_job_done, mark_job_done
from .encoder_loss import cor_square_error
from .nethook import InstrumentedModel

torch.backends.cudnn.benchmark = True

parser = argparse.ArgumentParser()
parser.add_argument('--lr', type=float, help='Learning rate', default=0.01)
parser.add_argument('--image_number', type=int, help='Image number',
        default=95)
parser.add_argument('--image_source', #choices=['val', 'train', 'gan', 'test'],
        default='test')
parser.add_argument('--redo', type=int, help='Nonzero to delete done.txt',
        default=0)
parser.add_argument('--residuals', nargs='*', help='Residuals to adjust',
        default=None)
parser.add_argument('--model', type=str, help='Dataset being modeled',
        default='church')
parser.add_argument('--halfsize', type=int,
        help='Set to 1 for half size enoder',
        default=0)
parser.add_argument('--snapshot_every', type=int,
        help='only generate snapshots every n iterations',
        default=1000)
args = parser.parse_args()

num_steps = 3000
lr_milestones = [800, 1200, 1800]
residuals = (args.residuals if args.residuals is not None
        else ['layer1', 'layer2', 'layer3'])
global_seed = 1
learning_rate = args.lr
image_number = args.image_number
expgroup = 'optimize_residuals'
# Use an explicit directory name for a different selection of residuals.
if args.residuals is not None:
    expgroup += '_' + '_'.join(residuals)
imagetypecode = (dict(val='i', train='n', gan='z', test='t')
        .get(args.image_source, args.image_source[0]))
expname = 'opt_%s_%d' % (imagetypecode, image_number)
expdir = os.path.join('results', args.model, expgroup, 'cases', expname)
sumdir = os.path.join('results', args.model, expgroup,
        'summary_%s' % imagetypecode)
os.makedirs(expdir, exist_ok=True)
os.makedirs(sumdir, exist_ok=True)

# First load single image optimize (load via test ParallelFolder dataset).

def main():
    pbar.print('Running %s' % expdir)
    delete_log()

    # Grab a target image
    dirname = os.path.join(expdir, 'images')
    os.makedirs(dirname, exist_ok=True)
    loaded_image, loaded_z = setting.load_test_image(image_number,
            args.image_source, model=args.model)
    visualize_results((image_number, 'target'),
            loaded_image[0], summarize=True)

    # Load the pretrained generator model.
    gan_generator = setting.load_proggan(args.model)
    # We will wrap this model
    unwrapped_H = nethook.subsequence(gan_generator, last_layer='layer4')
    # Edit the output of this layer
    F = nethook.subsequence(gan_generator, first_layer='layer5')

    # Load a pretrained gan inverter
    encoder = nethook.InstrumentedModel(
            encoder_net.HybridLayerNormEncoder(halfsize=args.halfsize))
    encoder.load_state_dict(torch.load(os.path.join('results', args.model,
       'invert_hybrid_cse/snapshots/epoch_1000.pth.tar'))['state_dict'])
    encoder.eval()
    E = nethook.subsequence(encoder.model, last_layer='resnet')
    D = nethook.subsequence(encoder.model, first_layer='inv4')

    # Also make a conv features model from pretrained VGG
    vgg = models.vgg16(pretrained=True)
    VF = nethook.subsequence(vgg.features, last_layer='20')

    # Move models and data to GPU
    for m in [F, unwrapped_H, E, D, VF]:
        m.cuda()

    # Some constants for the GPU
    with torch.no_grad():
        # Our true image is constant
        true_p = loaded_image.cuda()
        # Invert our image once!
        init_r = E(true_p)
        init_z = D(init_r)
        # Compute our features once!
        true_v = VF(true_p)
        # For GAN-generated images we have ground truth.
        if loaded_z is None:
            true_z = None
            true_r = None
            true_r1, true_r2, true_r3 = None, None, None
        else:
            true_z = loaded_z.cuda()
            with InstrumentedModel(unwrapped_H) as inst_H:
                inst_H.retain_layers(['layer1', 'layer2', 'layer3'])
                true_r = inst_H(true_z)
                true_r1, true_r2, true_r3 = [inst_H.retained_layer(n)
                        for n in ['layer1', 'layer2', 'layer3']]

    # The model we learn are the top-level parameters of this wrapped model.
    H = encoder_net.ResidualGenerator(
            unwrapped_H, init_z, residuals)
    H.eval()
    H.cuda()

    # Set up optimizer
    set_requires_grad(False, F, H, E, D, VF)
    parameters = OrderedDict(H.named_parameters(recurse=False))
    for n, p in parameters.items():
        p.requires_grad = True
    optimizer = torch.optim.Adam(parameters.values(), lr=learning_rate)
    scheduler = torch.optim.lr_scheduler.MultiStepLR(
            optimizer, milestones=lr_milestones, gamma=0.5)

    # Phase 1: find a better r4 by seeking d1, d2, d3, etc.
    for step_num in pbar(range(num_steps + 1)):
        current_r = H()
        current_p = F(current_r)
        current_v = VF(current_p)

        loss_p = l1_loss(true_p, current_p)
        loss_v = l1_loss(true_v, current_v)
        loss_z = H.dz.pow(2).mean() if hasattr(H, 'dz') else 0
        loss_1 = H.d1.pow(2).mean() if hasattr(H, 'd1') else 0
        loss_2 = H.d2.pow(2).mean() if hasattr(H, 'd2') else 0
        loss_3 = H.d3.pow(2).mean() if hasattr(H, 'd3') else 0
        loss_4 = H.d4.pow(2).mean() if hasattr(H, 'd4') else 0
        loss_r = mse_loss(init_r, current_r)
        loss = (loss_p + loss_v + loss_z + loss_1 + loss_2 + loss_3 + loss_4)

        all_loss = dict(loss=loss, loss_v=loss_v, loss_p=loss_p,
                loss_r=loss_r,
                loss_z=loss_z,
                loss_1=loss_1,
                loss_2=loss_2,
                loss_3=loss_3,
                loss_4=loss_4
                )
        all_loss = { k: v.item() for k, v in all_loss.items()
                if v is not 0 }

        if (step_num % args.snapshot_every == 0) or (step_num == num_steps):
            with torch.no_grad():
                if true_r is not None:
                    all_loss['err_r'] = cor_square_error(current_r, true_r
                            ) * 100
                all_loss['err_p'] = (current_p - true_p).pow(2).mean() * 100
                log_progress('%d ' % step_num + ' '.join(
                    '%s=%.3f' % (k, all_loss[k])
                    for k in sorted(all_loss.keys())), phase='a')
                visualize_results((image_number, 'a', step_num), current_p,
                        summarize=(step_num in [0, num_steps]))
                checkpoint_dict = OrderedDict(all_loss)
                for s in residuals:
                    s = s.replace('layer', '')
                    checkpoint_dict['init_%s' % s] = getattr(H, 'init_' + s)
                    checkpoint_dict['d_%s' % s] = getattr(H, 'd' + s)
                    checkpoint_dict['current_%s' % s] = (
                            getattr(H, 'init_' + s) + getattr(H, 'd' + s))
            save_checkpoint(
                phase='a',
                step=step_num,
                current_r=current_r,
                current_p=current_p,
                true_z=true_z,
                true_r=true_r,
                true_p=true_p,
                lr=learning_rate,
                optimizer=optimizer.state_dict(),
                **checkpoint_dict)

        optimizer.zero_grad()
        loss.backward()
        if step_num < num_steps:
            optimizer.step()
            scheduler.step()

def delete_log():
    try:
        os.remove(os.path.join(expdir, 'log.txt'))
    except:
        pass

def log_progress(s, phase='a'):
    with open(os.path.join(expdir, 'log.txt'), 'a') as f:
        f.write(phase + ' ' + s + '\n')
    pbar.print(s)

def save_checkpoint(**kwargs):
    dirname = os.path.join(expdir, 'snapshots')
    os.makedirs(dirname, exist_ok=True)
    filename = 'step_%s_%d.pth.tar' % (kwargs['phase'], kwargs['step'])
    torch.save(kwargs, os.path.join(dirname, filename))
    # Also save as .mat file for analysis.
    numeric_data = {
            k: v.detach().cpu().numpy() if isinstance(v, torch.Tensor) else v
            for k, v in kwargs.items()
            if isinstance(v, (Number, numpy.ndarray, torch.Tensor))}
    filename = 'step_%s_%d.npz' % (kwargs['phase'], kwargs['step'])
    numpy.savez(os.path.join(dirname, filename), **numeric_data)

def visualize_results(step, img, summarize=False):
    if isinstance(step, tuple):
        filename = '%s.png' % ('_'.join(str(i) for i in step))
    else:
        filename = '%s.png' % str(step)
    dirname = os.path.join(expdir, 'images')
    os.makedirs(dirname, exist_ok=True)
    save_tensor_image(img, os.path.join(dirname, filename))
    lbname = os.path.join(dirname, '+lightbox.html')
    if not os.path.exists(lbname):
        shutil.copy(os.path.join(os.path.dirname(__file__),
            'lightbox.html'), lbname)
    if summarize:
        save_tensor_image(img, os.path.join(sumdir, filename))
        lbname = os.path.join(sumdir, '+lightbox.html')
        if not os.path.exists(lbname):
            shutil.copy(os.path.join(os.path.dirname(__file__),
                'lightbox.html'), lbname)

def save_tensor_image(img, filename):
    if len(img.shape) == 4:
        img = img[0]
    np_data = ((img.permute(1, 2, 0) / 2 + 0.5) * 255
            ).clamp(0, 255).byte().cpu().numpy()
    PIL.Image.fromarray(np_data).save(filename)

def set_requires_grad(requires_grad, *models):
    for model in models:
        if isinstance(model, torch.nn.Module):
            for param in model.parameters():
                param.requires_grad = requires_grad
        elif isintance(model, torch.nn.Parameter):
            model.requires_grad = requires_grad
        else:
            assert False, 'unknown type %r' % type(model)

def edit(x):
    x = x.clone()
    x[:,EDIT_UNITS] = 0
    return x

#unit_level99 = {}
#for cls in ablation_units:
#    corpus = numpy.load('reltest/churchoutdoor/layer4/ace/%s/corpus.npz' % cls)


if __name__ == '__main__':
    exit_if_job_done(expdir, redo=args.redo)
    main()
    mark_job_done(expdir)