File size: 45,238 Bytes
92f0e98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923

import torch
import torch.nn as nn

from functools import reduce
from torch.autograd import Variable

def load_places_resnet152(weight_file):
    model = OldResNet152()
    state_dict = torch.load(weight_file)
    model.load_state_dict(state_dict)
    return model

class LambdaBase(nn.Sequential):
    def __init__(self, fn, *args):
        super(LambdaBase, self).__init__(*args)
        self.lambda_func = fn

    def forward_prepare(self, input):
        output = []
        for module in self._modules.values():
            output.append(module(input))
        return output if output else input

class Lambda(LambdaBase):
    def forward(self, input):
        return self.lambda_func(self.forward_prepare(input))

class LambdaMap(LambdaBase):
    def forward(self, input):
        return list(map(self.lambda_func,self.forward_prepare(input)))

class LambdaReduce(LambdaBase):
    def forward(self, input):
        return reduce(self.lambda_func,self.forward_prepare(input))


class OldResNet152(nn.Sequential):
    def __init__(self):
        children = [
# resnet152_places365 = nn.Sequential( # Sequential,
            nn.Conv2d(3,64,(7, 7),(2, 2),(3, 3),1,1,bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.MaxPool2d((3, 3),(2, 2),(1, 1)),
            nn.Sequential( # Sequential,
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(64,64,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(64),
                            nn.ReLU(),
                            nn.Conv2d(64,64,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(64),
                            nn.ReLU(),
                            nn.Conv2d(64,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                        ),
                        nn.Sequential( # Sequential,
                            nn.Conv2d(64,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                        ),
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(256,64,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(64),
                            nn.ReLU(),
                            nn.Conv2d(64,64,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(64),
                            nn.ReLU(),
                            nn.Conv2d(64,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(256,64,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(64),
                            nn.ReLU(),
                            nn.Conv2d(64,64,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(64),
                            nn.ReLU(),
                            nn.Conv2d(64,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
            ),
            nn.Sequential( # Sequential,
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(256,128,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(128),
                            nn.ReLU(),
                            nn.Conv2d(128,128,(3, 3),(2, 2),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(128),
                            nn.ReLU(),
                            nn.Conv2d(128,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(512),
                        ),
                        nn.Sequential( # Sequential,
                            nn.Conv2d(256,512,(1, 1),(2, 2),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(512),
                        ),
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(512,128,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(128),
                            nn.ReLU(),
                            nn.Conv2d(128,128,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(128),
                            nn.ReLU(),
                            nn.Conv2d(128,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(512),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(512,128,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(128),
                            nn.ReLU(),
                            nn.Conv2d(128,128,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(128),
                            nn.ReLU(),
                            nn.Conv2d(128,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(512),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(512,128,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(128),
                            nn.ReLU(),
                            nn.Conv2d(128,128,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(128),
                            nn.ReLU(),
                            nn.Conv2d(128,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(512),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(512,128,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(128),
                            nn.ReLU(),
                            nn.Conv2d(128,128,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(128),
                            nn.ReLU(),
                            nn.Conv2d(128,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(512),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(512,128,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(128),
                            nn.ReLU(),
                            nn.Conv2d(128,128,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(128),
                            nn.ReLU(),
                            nn.Conv2d(128,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(512),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(512,128,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(128),
                            nn.ReLU(),
                            nn.Conv2d(128,128,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(128),
                            nn.ReLU(),
                            nn.Conv2d(128,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(512),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(512,128,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(128),
                            nn.ReLU(),
                            nn.Conv2d(128,128,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(128),
                            nn.ReLU(),
                            nn.Conv2d(128,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(512),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
            ),
            nn.Sequential( # Sequential,
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(512,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(2, 2),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        nn.Sequential( # Sequential,
                            nn.Conv2d(512,1024,(1, 1),(2, 2),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(256),
                            nn.ReLU(),
                            nn.Conv2d(256,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(1024),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
            ),
            nn.Sequential( # Sequential,
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(512),
                            nn.ReLU(),
                            nn.Conv2d(512,512,(3, 3),(2, 2),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(512),
                            nn.ReLU(),
                            nn.Conv2d(512,2048,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(2048),
                        ),
                        nn.Sequential( # Sequential,
                            nn.Conv2d(1024,2048,(1, 1),(2, 2),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(2048),
                        ),
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(2048,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(512),
                            nn.ReLU(),
                            nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(512),
                            nn.ReLU(),
                            nn.Conv2d(512,2048,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(2048),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
                nn.Sequential( # Sequential,
                    LambdaMap(lambda x: x, # ConcatTable,
                        nn.Sequential( # Sequential,
                            nn.Conv2d(2048,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(512),
                            nn.ReLU(),
                            nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,1,bias=False),
                            nn.BatchNorm2d(512),
                            nn.ReLU(),
                            nn.Conv2d(512,2048,(1, 1),(1, 1),(0, 0),1,1,bias=False),
                            nn.BatchNorm2d(2048),
                        ),
                        Lambda(lambda x: x), # Identity,
                    ),
                    LambdaReduce(lambda x,y: x+y), # CAddTable,
                    nn.ReLU(),
                ),
            ),
            nn.AvgPool2d((7, 7),(1, 1)),
            Lambda(lambda x: x.view(x.size(0),-1)), # View,
            nn.Sequential(Lambda(lambda x: x.view(1,-1) if 1==len(x.size()) else x )
                    ,nn.Linear(2048,365)), # Linear,
        ]

        super(OldResNet152, self).__init__(*children)