File size: 9,451 Bytes
92f0e98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import torch, torchvision, os, collections
from . import parallelfolder, zdataset, renormalize, encoder_net, segmenter
from . import bargraph

def load_proggan(domain):
    # Automatically download and cache progressive GAN model
    # (From Karras, converted from Tensorflow to Pytorch.)
    from . import proggan
    weights_filename = dict(
        bedroom='proggan_bedroom-d8a89ff1.pth',
        church='proggan_churchoutdoor-7e701dd5.pth',
        conferenceroom='proggan_conferenceroom-21e85882.pth',
        diningroom='proggan_diningroom-3aa0ab80.pth',
        kitchen='proggan_kitchen-67f1e16c.pth',
        livingroom='proggan_livingroom-5ef336dd.pth',
        restaurant='proggan_restaurant-b8578299.pth',
        celebhq='proggan_celebhq-620d161c.pth')[domain]
    # Posted here.
    url = 'http://gandissect.csail.mit.edu/models/' + weights_filename
    try:
        sd = torch.hub.load_state_dict_from_url(url) # pytorch 1.1
    except:
        sd = torch.hub.model_zoo.load_url(url) # pytorch 1.0
    model = proggan.from_state_dict(sd)
    return model

def load_vgg16(domain='places'):
    assert domain == 'places'
    model = torchvision.models.vgg16(num_classes=365)
    model.features = torch.nn.Sequential(collections.OrderedDict(zip([
        'conv1_1', 'relu1_1',
        'conv1_2', 'relu1_2',
        'pool1',
        'conv2_1', 'relu2_1',
        'conv2_2', 'relu2_2',
        'pool2',
        'conv3_1', 'relu3_1',
        'conv3_2', 'relu3_2',
        'conv3_3', 'relu3_3',
        'pool3',
        'conv4_1', 'relu4_1',
        'conv4_2', 'relu4_2',
        'conv4_3', 'relu4_3',
        'pool4',
        'conv5_1', 'relu5_1',
        'conv5_2', 'relu5_2',
        'conv5_3', 'relu5_3',
        'pool5'],
        model.features)))
    model.classifier = torch.nn.Sequential(collections.OrderedDict(zip([
        'fc6', 'relu6',
        'drop6',
        'fc7', 'relu7',
        'drop7',
        'fc8a'],
        model.classifier)))
    baseurl = 'http://gandissect.csail.mit.edu/models/'
    url = baseurl + 'vgg16_places365-6e38b568.pth'
    try:
        sd = torch.hub.load_state_dict_from_url(url) # pytorch 1.1
    except:
        sd = torch.hub.model_zoo.load_url(url) # pytorch 1.0

    model.load_state_dict(sd)
    model.eval()
    return model


def load_proggan_ablation(modelname):
    # Automatically download and cache progressive GAN model
    # (From Karras, converted from Tensorflow to Pytorch.)

    from . import proggan_ablation
    model_classname, weights_filename = {
		"equalized-learning-rate": (proggan_ablation.G128_equallr,
            "equalized-learning-rate-88ed833d.pth"),
        "minibatch-discrimination": (proggan_ablation.G128_minibatch_disc,
            "minibatch-discrimination-604c5731.pth"),
        "minibatch-stddev": (proggan_ablation.G128_minibatch_disc,
            "minibatch-stddev-068bc667.pth"),
        "pixelwise-normalization": (proggan_ablation.G128_pixelwisenorm,
            "pixelwise-normalization-4da7e9ce.pth"),
        "progressive-training": (proggan_ablation.G128_simple,
            "progressive-training-70bd90ac.pth"),
        # "revised-training-parameters": (_,
        #     "revised-training-parameters-902f5486.pth")
        "small-minibatch": (proggan_ablation.G128_simple,
            "small-minibatch-04143d18.pth"),
        "wgangp": (proggan_ablation.G128_simple,
            "wgangp-beaa509a.pth")
        }[modelname]
    # Posted here.
    url = 'http://gandissect.csail.mit.edu/models/ablations/' + weights_filename
    try:
        sd = torch.hub.load_state_dict_from_url(url) # pytorch 1.1
    except:
        sd = torch.hub.model_zoo.load_url(url) # pytorch 1.0
    model = model_classname()
    model.load_state_dict(sd)
    return model

def load_proggan_inversion(modelname):
    # A couple inversion models pretrained using the code in this repo.

    from . import proggan_ablation
    model_classname, weights_filename = {
		"church": (encoder_net.HybridLayerNormEncoder,
            "church_invert_hybrid_cse-43e52428.pth"),
		"bedroom": (encoder_net.HybridLayerNormEncoder,
            "bedroom_invert_hybrid_cse-b943528e.pth"),
        }[modelname]
    # Posted here.
    url = 'http://gandissect.csail.mit.edu/models/encoders/' + weights_filename
    try:
        sd = torch.hub.load_state_dict_from_url(url) # pytorch 1.1
    except:
        sd = torch.hub.model_zoo.load_url(url) # pytorch 1.0
    if 'state_dict' in sd:
        sd = sd['state_dict']
    sd = {k.replace('model.', ''): v for k, v in sd.items()}
    model = model_classname()
    model.load_state_dict(sd)
    model.eval()
    return model


g_datasets = {}

def load_dataset(domain, split=None, full=False, download=True):
    if domain in g_datasets:
        return g_datasets[domain]
    if domain == 'places':
        if split is None:
            split = 'val'
        dirname = 'datasets/microimagenet'
        if download and not os.path.exists(dirname):
            os.makedirs('datasets', exist_ok=True)
            torchvision.datasets.utils.download_and_extract_archive(
                'http://gandissect.csail.mit.edu/datasets/' +
                'microimagenet.zip',
                'datasets')
        return parallelfolder.ParallelImageFolders([dirname],
                classification=True,
                shuffle=True,
                transform=g_places_transform)
    else:
        # Assume lsun dataset
        if split is None:
            split = 'train'
        dirname = os.path.join(
                'datasets', 'lsun' if full else 'minilsun', domain)
        dirname += '_' + split
        if download and not full and not os.path.exists('datasets/minilsun'):
            os.makedirs('datasets', exist_ok=True)
            torchvision.datasets.utils.download_and_extract_archive(
                    'http://gandissect.csail.mit.edu/datasets/minilsun.zip',
                    'datasets',
                    md5='a67a898673a559db95601314b9b51cd5')
        return parallelfolder.ParallelImageFolders([dirname],
                shuffle=True,
                transform=g_transform)

g_transform = torchvision.transforms.Compose([
    torchvision.transforms.Resize(256),
    torchvision.transforms.CenterCrop(256),
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

g_places_transform = torchvision.transforms.Compose([
    torchvision.transforms.Resize(256),
    torchvision.transforms.CenterCrop(224),
    torchvision.transforms.ToTensor(),
    renormalize.NORMALIZER['imagenet']])

def load_segmenter(segmenter_name='netpqc'):
    '''Loads the segementer.'''
    all_parts = ('p' in segmenter_name)
    quad_seg = ('q' in segmenter_name)
    textures = ('x' in segmenter_name)
    colors = ('c' in segmenter_name)

    segmodels = []
    segmodels.append(segmenter.UnifiedParsingSegmenter(segsizes=[256],
            all_parts=all_parts,
            segdiv=('quad' if quad_seg else None)))
    if textures:
        segmenter.ensure_segmenter_downloaded('datasets/segmodel', 'texture')
        segmodels.append(segmenter.SemanticSegmenter(
            segvocab="texture", segarch=("resnet18dilated", "ppm_deepsup")))
    if colors:
        segmenter.ensure_segmenter_downloaded('datasets/segmodel', 'color')
        segmodels.append(segmenter.SemanticSegmenter(
            segvocab="color", segarch=("resnet18dilated", "ppm_deepsup")))
    if len(segmodels) == 1:
        segmodel = segmodels[0]
    else:
        segmodel = segmenter.MergedSegmenter(segmodels)
    seglabels = [l for l, c in segmodel.get_label_and_category_names()[0]]
    segcatlabels = segmodel.get_label_and_category_names()[0]
    return segmodel, seglabels, segcatlabels

def graph_conceptcatlist(conceptcatlist,  cats = None, print_nums = False, **kwargs):
    count = collections.defaultdict(int)
    catcount = collections.defaultdict(int)
    for c in conceptcatlist:
        count[c] += 1
    for c in count.keys():
        catcount[c[1]] += 1
    if cats is None:
        cats = ['object', 'part', 'material', 'texture', 'color']
    catorder = dict((c, i) for i, c in enumerate(cats))
    sorted_labels = sorted(count.keys(),
        key=lambda x: (catorder[x[1]], -count[x]))
    sorted_labels
    tot_num = 0
    if print_nums:
        for k in sorted_labels:
            print(count[k])
            tot_num += count[k]
        print("Total unique concepts: {}".format(tot_num))
    return bargraph.make_svg_bargraph(
        [label for label, cat in sorted_labels],
        [count[k] for k in sorted_labels],
        [(c, catcount[c]) for c in cats], **kwargs)

def save_concept_graph(filename, conceptlist):
    svg = graph_conceptlist(conceptlist, file_header=True)
    with open(filename, 'w') as f:
        f.write(svg)

def save_conceptcat_graph(filename, conceptcatlist):
    svg = graph_conceptcatlist(conceptcatlist, barheight=80, file_header=True)
    with open(filename, 'w') as f:
        f.write(svg)

def load_test_image(imgnum, split, model, full=False):
    if split == 'gan':
        with torch.no_grad():
            generator = load_proggan(model)
            z = zdataset.z_sample_for_model(generator, size=(imgnum + 1)
                    )[imgnum]
            z = z[None]
            return generator(z), z
    assert split in ['train', 'val']
    ds = load_dataset(model, split, full=full)
    return ds[imgnum][0][None], None

if __name__ == '__main__':
    main()