File size: 20,772 Bytes
92f0e98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import PIL, torch, os
from monai.transforms import CenterSpatialCrop
import numpy as np
from . import upsample, renormalize, segviz, tally
from matplotlib import cm

class ImageVisualizer:
    def __init__(self, size, image_size=None, data_size=None,
            renormalizer=None, scale_offset=None, level=None, actrange=None,
            source=None, convolutions=None, quantiles=None,
            percent_level=None):
        '''
        An ImageVisualizer produces visualizations of unit activations
        as heatmaps or overlays on top of the original image.  The output
        visualization size is given by `size`.  This may be scaled
        from the original image size `image_size` (inferred from source
        if not specified) and activation `data_size` (inferred from
        convolutions if not specified).  Imagedata is renormalized as
        rendered RGB using renormalizer (inferred from source if not
        specified) and upsampling can be offset using scale_offset
        (inferred from convolutions if not specified).  Per-unit
        `quantiles` can be provided for computing heatmap ranges
        (default to 1% to 99% quantiles), and threshold levels
        (default to `percent_level`=0.95).
        '''
        if image_size is None and source is not None:
            image_size = upsample.image_size_from_source(source)
        if renormalizer is None and source is not None:
            renormalizer = renormalize.renormalizer(
                    source=source, target='byte')
        if scale_offset is None and convolutions is not None:
            scale_offset = upsample.sequence_scale_offset(convolutions)
        if data_size is None and convolutions is not None:
            data_size = upsample.sequence_data_size(convolutions, image_size)
        if level is None and quantiles is not None:
            level = quantiles.quantiles([percent_level or 0.95])[:,0]
        if actrange is None and quantiles is not None:
            actrange = quantiles.quantiles([0.01, 0.99])
        if isinstance(size, int):
            size = (size, size)
        self.size = size
        self.image_size = image_size
        self.data_size = data_size
        self.renormalizer = renormalizer
        self.scale_offset = scale_offset
        self.percent_level = percent_level
        self.level = level
        self.actrange = actrange
        self.quantiles = quantiles
        self.upsampler = None
        if self.data_size is not None:
            self.upsampler = upsample.upsampler(size, data_size,
                    image_size=self.image_size,
                    scale_offset=scale_offset)

    def heatmap(self, activations, unit=None, mode='bilinear',
            amax=None, amin=None):
        '''
        Produces a heatmap from the given activations.  The unit,
        if specified, is an index into the activations tensor,
        and is also used to dereference quantile ranges.
        '''
        if amax is None or amin is None:
            amin, amax = self.range_for(activations, unit)
        if unit is None:
            a = activations
        else:
            a = activations[unit]
        upsampler = self.upsampler_for(a)
        a = upsampler(a[None,None,...], mode=mode)[0,0].cpu()
        return PIL.Image.fromarray(
                (cm.hot(((a - amin) / (1e-10 + amax - amin)).numpy()) * 255
                    ).astype('uint8'))

    def segmentation(self, segmentations, label=None):
        '''
        Visualizes the given segmentation tensor.  If label is specified,
        zeros all labels other than the given one.
        '''
        if label is not None:
            segmentations = segmentations.clone()
            segmentations[segmentations != label] = 0
        return segviz.seg_as_image(segmentations, size=self.size)

    def segment_key(self, segmentations, segmodel, num=None, label=None):
        '''
        Obtains a list of the top segment labels present in the given
        segmetation tensor, for use in a legend.
        '''
        if label is not None:
            segmentations = segmentations.clone()
            segmentations[segmentations != label] = 0
        if num is None:
            num = self.size[0] // 17
        return segviz.segment_key(segmentations, segmodel, num)

    def segment_key_with_lbls(self, segmentations, seglbs):
        '''
        Obtains a list of the top segment labels present in the given
        segmetation tensor, for use in a legend.
        '''
        return segviz.segment_key_with_lbls(segmentations, seglbs)

    def image(self, imagedata):
        '''
        Converts the given tensor imagedata to a PIL image, scaling
        and renormalizing as needed.
        '''
        return PIL.Image.fromarray(self.pytorch_image(imagedata)
                .permute(1, 2, 0).byte().cpu().numpy())

    def masked_image(self, imagedata, activations=None, unit=None,
            level=None, percent_level=None, **kwargs):
        '''
        Visualizes the given activations, thresholded at a specified level,
        overlaid on the given image, as a PIL image.
        '''
        result_image = self.pytorch_masked_image(imagedata,
                activations=activations,
                unit=unit, level=level, percent_level=percent_level,
                **kwargs)
        return PIL.Image.fromarray(
            result_image.permute(1, 2, 0).cpu().numpy())

    def pytorch_masked_image(self, imagedata, activations=None, unit=None,
            level=None, percent_level=None, thickness=1, mask=None,
            border_color=None, outside_bright=0.5, inside_color=None):
        '''
        Visualizes the given activations, thresholded at a specified level,
        overlaid on the given image, as a pytorch byte tensor (channel first).
        '''
        scaled_image = self.pytorch_image(imagedata).float().cpu()
        if mask is None:
            mask = self.pytorch_mask(activations, unit, level=level,
                    percent_level=percent_level).cpu()
        border = border_from_mask(mask, thickness)
        inside = (mask & (~border))
        outside = (~mask & (~border))
        inside, outside, border = [d.float() for d in [inside, outside, border]]
        if border_color is None:
            border_color = [255.0, 255.0, 0] # yellow
        border_color = torch.tensor(border_color,
                dtype=border.dtype, device=border.device)[:,None,None]
        if inside_color is not None:
            inside_color = torch.tensor(inside_color,
                dtype=border.dtype, device=border.device)[:,None,None]
        result_image = (
                (scaled_image if inside_color is None
                    else inside_color) * inside +
                border_color * border +
                outside_bright * scaled_image * outside).clamp(0, 255).byte()
        return result_image

    def masked_delta(self, imagedata, activations, unit=None,
            above=None, below=None):
        '''
        Visualizes the given activations, thresholded at a specified level,
        overlaid on the given image, as a PIL image.
        '''
        result_image = self.pytorch_masked_delta(imagedata, activations,
                unit=unit, above=above, below=below)
        return PIL.Image.fromarray(
            result_image.permute(1, 2, 0).cpu().numpy())

    def pytorch_masked_delta(self, imagedata, delta, unit=None,
            above=None, below=None):
        '''
        Visualizes the given activations, thresholded at a specified level,
        with green for high numbrers and red for low numbers.
        '''
        scaled_image = self.pytorch_image(imagedata).float().cpu()
        amask, bmask, aborder, bborder = [torch.tensor(0) for _ in range(4)]
        if above is not None:
            amask = self.pytorch_mask(delta, unit, level=above).cpu()
            aborder = border_from_mask(amask)
        if below is not None:
            bmask = ~self.pytorch_mask(delta, unit, level=below).cpu()
            bborder = border_from_mask(bmask)
        inside = ((amask | bmask) & ~(aborder | bborder))
        outside = (~(amask | bmask) & ~(aborder | bborder))
        inside, outside, aborder, bborder = [d.float()
                for d in [inside, outside, aborder, bborder]]
        red, green = [torch.tensor(c, dtype=torch.float, device=aborder.device
            )[:,None,None] for c in [[255, 0, 0], [0, 255, 0]]]
        result_image = (
                scaled_image * inside +
                green * aborder +
                red * bborder +
                0.5 * scaled_image * outside).clamp(0, 255).byte()
        return result_image

    def pytorch_mask(self, activations, unit, level=None, percent_level=None):
        '''
        Computes a pytorch mask of the (upsampled) activations above a
        specified level.
        '''
        if unit is None:
            a = activations
        else:
            a = activations[unit]
        if level is None:
            level = self.level_for(activations, unit,
                    percent_level=percent_level)
        upsampler = self.upsampler_for(a)
        return (upsampler(a[None, None,...])[0,0] > level)

    def pytorch_image(self, imagedata):
        '''
        Scales the given image to the visualized size.  returns as a
        pytorch byte tensor, in (rgb, y, x) channel order.
        '''
        if len(imagedata.shape) == 4:
            imagedata = imagedata[0]
        renormalizer = self.renormalizer_for(imagedata)
        return torch.nn.functional.interpolate(
                renormalizer(imagedata).float()[None,...],
                size=self.size)[0]

    def upsampler_for(self, a):
        '''
        Returns an upsampler instance, defaulting to simple upscaling
        if a specific upsampler is not specified.
        '''
        if self.upsampler is not None:
            return self.upsampler
        return upsample.upsampler(self.size, a.shape,
                    image_size=self.image_size,
                    scale_offset=self.scale_offset,
                    dtype=a.dtype, device=a.device)

    def range_for(self, activations, unit):
        '''
        Returns a range of activations, using quantiles (1% to 99%)
        if given, or just using the min and max of the data if
        quantiles are not given.
        '''
        if unit is not None and self.actrange is not None:
            if hasattr(unit, '__len__'):
                unit = unit[1]
            return tuple(i.item() for i in self.actrange[unit])
        return activations.min().item(), activations.max().item()

    def level_for(self, activations, unit, percent_level=None):
        '''
        Returns the cutoff level for a unit, using quantiles if given
        or just using stats over the specific instance if not.
        '''
        if unit is not None:
            if hasattr(unit, '__len__'):
                unit = unit[1]
            if percent_level is not None and self.quantiles is not None:
                return self.quantiles.quantiles(percent_level)[unit].item()
            if self.level is not None:
                return self.level[unit].item()
        s, _ = activations.view(-1).sort()
        if percent_level is None:
            percent_level = self.percent_level or 0.95
        return s[int(len(s) * percent_level)]

    def renormalizer_for(self, image):
        '''
        Returns the renormalizer to use for visualizing the tensor
        image data as RGB.
        '''
        if self.renormalizer is not None:
            return self.renormalizer
        return renormalize.renormalizer('zc', 'byte')

    def masked_image_grid_for_topk(
            self, compute, dataset, topk, k=None, **kwargs):
        def compute_viz(gather_indices, *data_batch):
            acts_batch = compute(*data_batch)
            if isinstance(acts_batch, tuple):
                acts_batch, image_batch = acts_batch
            else:
                image_batch = data_batch[0]
            for gather_for, acts, imgt in (zip(gather_indices, acts_batch, image_batch["image"])):
                # TODO This is only a single direction
                # Visualize all low-dimensional activations in that direction
                ld_res = acts.shape[-1]
                img_slices = torch.linspace(int(64/ld_res/2), 64-int(64/ld_res/2), ld_res, dtype=torch.long)
                for unit, rank in gather_for:
                    yield((unit, rank), torch.stack([
                        self.pytorch_masked_image(
                            # This will break when used for any other tasks
                            (imgt[..., img_depth]).repeat(3, 1, 1),
                            acts[..., ld_depth],
                            unit).permute(1,2,0).cpu()
                            for ld_depth, img_depth in enumerate(img_slices)]))
                #for unit, rank in gather_for:
                #    three_channel_image = imgt[..., 0][0].repeat(3, 1, 1)
                #    yield((unit, rank), self.pytorch_masked_image(three_channel_image, acts[..., 0], unit).permute(1,2,0).cpu())
        gt = tally.gather_topk(compute_viz, dataset, topk=topk, k=k, **kwargs)
        return gt.result()

    def masked_single_image_for_topk(
            self, compute, dataset, topk, k=None, **kwargs):
        def compute_viz(gather_indices, *data_batch):
            acts_batch = compute(*data_batch)
            if isinstance(acts_batch, tuple):
                acts_batch, image_batch = acts_batch
            else:
                image_batch = data_batch[0]
            for gather_for, acts, imgt in (zip(gather_indices, acts_batch, image_batch["image"])):
                # TODO This is only a single direction
                # Visualize all low-dimensional activations in that direction
                ld_res = acts.shape[-1]
                img_slices = torch.linspace(int(64/ld_res/2), 64-int(64/ld_res/2), ld_res, dtype=torch.long)
                for unit, rank in gather_for:
                    #masked_acts = torch.zeros_like(acts[unit])
                    #mask = (acts[unit] > self.level_for(acts[unit], unit))
                    #masked_acts[mask] = acts[unit][mask]
                    masked_acts = torch.zeros_like(acts)
                    mask = (acts > self.level_for(acts, unit))
                    masked_acts[mask] = acts[mask]
                    selected_dim = torch.argmax(torch.sum(masked_acts.view(-1, ld_res), dim=0)).item()

                    yield((unit, rank), 
                        self.pytorch_masked_image(
                            (imgt[..., img_slices[selected_dim]]).repeat(3, 1, 1),
                            acts[..., selected_dim],
                            unit).permute(1,2,0).cpu()[None, ...])
                #for unit, rank in gather_for:
                #    three_channel_image = imgt[..., 0][0].repeat(3, 1, 1)
                #    yield((unit, rank), self.pytorch_masked_image(three_channel_image, acts[..., 0], unit).permute(1,2,0).cpu())
        gt = tally.gather_topk(compute_viz, dataset, topk=topk, k=k, **kwargs)
        return gt.result()

    def individual_masked_images_for_topk(
            self, compute, dataset, topk, k=None, **kwargs):
        # Example compute function:
        # def compute(image_batch):
        #   image_batch = image_batch.cuda()
        #   acts_batch = model.retained_layer(layername)
        gt = self.masked_image_grid_for_topk(
                compute, dataset, topk, k=k, **kwargs)
        return [[PIL.Image.fromarray(d.cpu().numpy()) for d in row]
                for row in gt]

    def masked_images_for_topk(
            self, compute, dataset, topk, k=None, gap=5, **kwargs):
        # Example compute function:
        # def compute(image_batch):
        #   image_batch = image_batch.cuda()
        #   acts_batch = model.retained_layer(layername)
        gt = self.masked_image_grid_for_topk(
                compute, dataset, topk, k=k, **kwargs)
        return [strip_image_from_grid_row(row, gap=gap) for row in gt]

    def masked_single_images_for_topk(
            self, compute, dataset, topk, k=None, gap=5, per_row=5, **kwargs):
        # Example compute function:
        # def compute(image_batch):
        #   image_batch = image_batch.cuda()
        #   acts_batch = model.retained_layer(layername)
        gt = self.masked_single_image_for_topk(
                compute, dataset, topk, k=k, **kwargs)
        return [strip_image_from_grid_row(torch.vstack([x.unsqueeze(0) for x in row.squeeze(1).split(per_row, dim=0) if x.shape[0] == per_row]), gap=gap) for row in gt]
        #return [strip_image_from_grid_row(torch.stack([gt[i+j] for j in range(per_row)]), gap=gap) for i in range(len(gt)//per_row)]

    def image_activation_tuples_for_topk(
        self, compute, dataset, data_path, topk, k=None, **kwargs):

        def compute_viz(gather_indices, *data_batch):
            acts_batch = compute(*data_batch)
            if isinstance(acts_batch, tuple):
                acts_batch, image_batch = acts_batch
            else:
                image_batch = data_batch[0]

            for gather_for, acts, path, level_idx in zip(gather_indices, acts_batch, image_batch["path"], image_batch["level_idx"]):
                raw_ct = torch.tensor(np.load(os.path.join(data_path, 'raw', path)))[None, ...]
                seg = torch.tensor(np.load(os.path.join(data_path, 'seg', path)))

                mask = torch.zeros_like(seg)
                mask[seg == level_idx] = 1

                crop = CenterSpatialCrop(64)
                raw_ct_crop = crop(raw_ct)
                mask_ct_crop = crop(raw_ct * mask[None, ...])

                upsampled_acts = torch.nn.Upsample(size=(64,)*3, mode="trilinear", align_corners=True)(acts[None, ...])

                # normalize activations to [0, 1] per unit
                normalized_upsampled_acts = torch.clone(upsampled_acts)
                normalized_upsampled_acts -= torch.amin(normalized_upsampled_acts, dim=(-3, -2, -1), keepdim=True)
                normalized_upsampled_acts /= torch.amax(normalized_upsampled_acts, dim=(-3, -2, -1), keepdim=True)
                
                for unit, rank in gather_for:
                    mask = upsampled_acts[0, unit] > self.level_for(upsampled_acts, unit)
                    normalized_upsampled_acts[0, unit][~mask] = 0

                    yield ((unit, rank), torch.cat((raw_ct_crop.cpu(), normalized_upsampled_acts[0, unit][None, ...].detach().cpu(), mask_ct_crop.cpu()), dim=0))

        gt = tally.gather_topk(compute_viz, dataset, topk=topk, k=k, **kwargs)
        return gt.result()

    def masked_image_grid_for_row(self, compute, dataset, unit, indexes):
        results = []
        for rank in indexes:
            img_batch = dataset[rank][0][None,...]
            acts_batch = compute(img_batch)
            results.append(self.pytorch_masked_image(
                img_batch[0], acts_batch[0], unit)
                .permute(1,2,0).cpu()[None,...])
        return torch.cat(results)

    def masked_image_row(self, compute, dataset, unit, indexes, gap=5):
        row = self.masked_image_grid_for_row(
                compute, dataset, unit, indexes)
        return strip_image_from_grid_row(row, gap=gap)

    def masked_image_for_conditional_topk(self, compute, dataset,
            ctk, classnum, unit, k=10, gap=5):
        row = self.masked_image_grid_for_row(
                compute, dataset, unit,
                ctk.conditional(classnum).result()[1][unit][:k])
        return strip_image_from_grid_row(row, gap=gap)

def strip_image_from_grid_row(row, gap=5, bg=255):
    strip = torch.full(
            (row.shape[0] * (row.shape[3] + gap) - gap,
             row.shape[1] * (row.shape[3] + gap) - gap,
             row.shape[4]), bg, dtype=row.dtype)
    for i in range(0, row.shape[0] * row.shape[1]):
        strip[(i // row.shape[1]) * (row.shape[2] + gap) : ((i // row.shape[1])+1) * (row.shape[2] + gap) - gap,
              (i % row.shape[1]) * (row.shape[3] + gap) : ((i % row.shape[1])+1) * (row.shape[3] + gap) - gap,
              :] = row[i // row.shape[1]][i % row.shape[1]]
    return PIL.Image.fromarray(strip.numpy())

def border_from_mask(mask, thickness=1, outside=True):
    a = mask
    out = torch.zeros_like(a)
    for it in range(thickness):
        h = (a[:-1,:] != a[1:,:])
        v = (a[:,:-1] != a[:,1:])
        d = (a[:-1,:-1] != a[1:,1:])
        u = (a[1:,:-1] != a[:-1,1:])
        out[:-1,:-1] |= d
        out[1:,1:] |= d
        out[1:,:-1] |= u
        out[:-1,1:] |= u
        out[:-1,:] |= h
        out[1:,:] |= h
        out[:,:-1] |= v
        out[:,1:] |= v
        if it > 0:
            out |= a
        a = out
    if outside:
        out &= ~mask
    return out