File size: 8,569 Bytes
92f0e98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import torch, sys, os, argparse, textwrap, numbers, numpy, json, PIL
from torchvision import transforms
from torch.utils.data import TensorDataset
from netdissect import pbar
from netdissect.nethook import edit_layers
from netdissect.zdataset import standard_z_sample
from netdissect.autoeval import autoimport_eval
from netdissect.easydict import EasyDict
from netdissect.modelconfig import create_instrumented_model
help_epilog = '''\
Example:
python -m netdissect.evalablate \
--segmenter "netdissect.GanImageSegmenter(segvocab='lowres', segsizes=[160,288], segdiv='quad')" \
--model "proggan.from_pth_file('models/lsun_models/${SCENE}_lsun.pth')" \
--outdir dissect/dissectdir \
--classname tree \
--layer layer4 \
--size 1000
Output layout:
dissectdir/layer5/ablation/mirror-iqr.json
{ class: "mirror",
classnum: 43,
pixel_total: 41342300,
class_pixels: 1234531,
layer: "layer5",
ranking: "mirror-iqr",
ablation_units: [341, 23, 12, 142, 83, ...]
ablation_pixels: [143242, 132344, 429931, ...]
}
'''
def main():
# Training settings
def strpair(arg):
p = tuple(arg.split(':'))
if len(p) == 1:
p = p + p
return p
parser = argparse.ArgumentParser(description='Ablation eval',
epilog=textwrap.dedent(help_epilog),
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('--model', type=str, default=None,
help='constructor for the model to test')
parser.add_argument('--pthfile', type=str, default=None,
help='filename of .pth file for the model')
parser.add_argument('--outdir', type=str, default='dissect', required=True,
help='directory for dissection output')
parser.add_argument('--layer', type=strpair,
help='space-separated list of layer names to edit' +
', in the form layername[:reportedname]')
parser.add_argument('--classname', type=str,
help='class name to ablate')
parser.add_argument('--metric', type=str, default='iou',
help='ordering metric for selecting units')
parser.add_argument('--unitcount', type=int, default=30,
help='number of units to ablate')
parser.add_argument('--segmenter', type=str,
help='directory containing segmentation dataset')
parser.add_argument('--netname', type=str, default=None,
help='name for network in generated reports')
parser.add_argument('--batch_size', type=int, default=25,
help='batch size for forward pass')
parser.add_argument('--mixed_units', action='store_true', default=False,
help='true to keep alpha for non-zeroed units')
parser.add_argument('--size', type=int, default=200,
help='number of images to test')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA usage')
parser.add_argument('--quiet', action='store_true', default=False,
help='silences console output')
if len(sys.argv) == 1:
parser.print_usage(sys.stderr)
sys.exit(1)
args = parser.parse_args()
# Set up console output
pbar.verbose(not args.quiet)
# Speed up pytorch
torch.backends.cudnn.benchmark = True
# Set up CUDA
args.cuda = not args.no_cuda and torch.cuda.is_available()
if args.cuda:
torch.backends.cudnn.benchmark = True
# Take defaults for model constructor etc from dissect.json settings.
with open(os.path.join(args.outdir, 'dissect.json')) as f:
dissection = EasyDict(json.load(f))
if args.model is None:
args.model = dissection.settings.model
if args.pthfile is None:
args.pthfile = dissection.settings.pthfile
if args.segmenter is None:
args.segmenter = dissection.settings.segmenter
if args.layer is None:
args.layer = dissection.settings.layers[0]
args.layers = [args.layer]
# Also load specific analysis
layername = args.layer[1]
if args.metric == 'iou':
summary = dissection
else:
with open(os.path.join(args.outdir, layername, args.metric,
args.classname, 'summary.json')) as f:
summary = EasyDict(json.load(f))
# Instantiate generator
model = create_instrumented_model(args, gen=True, edit=True)
if model is None:
print('No model specified')
sys.exit(1)
# Instantiate model
device = next(model.parameters()).device
input_shape = model.input_shape
# 4d input if convolutional, 2d input if first layer is linear.
raw_sample = standard_z_sample(args.size, input_shape[1], seed=3).view(
(args.size,) + input_shape[1:])
dataset = TensorDataset(raw_sample)
# Create the segmenter
segmenter = autoimport_eval(args.segmenter)
# Now do the actual work.
labelnames, catnames = (
segmenter.get_label_and_category_names(dataset))
label_category = [catnames.index(c) if c in catnames else 0
for l, c in labelnames]
labelnum_from_name = {n[0]: i for i, n in enumerate(labelnames)}
segloader = torch.utils.data.DataLoader(dataset,
batch_size=args.batch_size, num_workers=10,
pin_memory=(device.type == 'cuda'))
# Index the dissection layers by layer name.
# First, collect a baseline
for l in model.ablation:
model.ablation[l] = None
# For each sort-order, do an ablation
classname = args.classname
classnum = labelnum_from_name[classname]
# Get iou ranking from dissect.json
iou_rankname = '%s-%s' % (classname, 'iou')
dissect_layer = {lrec.layer: lrec for lrec in dissection.layers}
iou_ranking = next(r for r in dissect_layer[layername].rankings
if r.name == iou_rankname)
# Get trained ranking from summary.json
rankname = '%s-%s' % (classname, args.metric)
summary_layer = {lrec.layer: lrec for lrec in summary.layers}
ranking = next(r for r in summary_layer[layername].rankings
if r.name == rankname)
# Get ordering, first by ranking, then break ties by iou.
ordering = [t[2] for t in sorted([(s1, s2, i)
for i, (s1, s2) in enumerate(zip(ranking.score, iou_ranking.score))])]
values = (-numpy.array(ranking.score))[ordering]
if not args.mixed_units:
values[...] = 1
ablationdir = os.path.join(args.outdir, layername, 'fullablation')
measurements = measure_full_ablation(segmenter, segloader,
model, classnum, layername,
ordering[:args.unitcount], values[:args.unitcount])
measurements = measurements.cpu().numpy().tolist()
os.makedirs(ablationdir, exist_ok=True)
with open(os.path.join(ablationdir, '%s.json'%rankname), 'w') as f:
json.dump(dict(
classname=classname,
classnum=classnum,
baseline=measurements[0],
layer=layername,
metric=args.metric,
ablation_units=ordering,
ablation_values=values.tolist(),
ablation_effects=measurements[1:]), f)
def measure_full_ablation(segmenter, loader, model, classnum, layer,
ordering, values):
'''
Quick and easy counting of segmented pixels reduced by ablating units.
'''
device = next(model.parameters()).device
feature_units = model.feature_shape[layer][1]
feature_shape = model.feature_shape[layer][2:]
repeats = len(ordering)
total_scores = torch.zeros(repeats + 1)
print(ordering)
print(values.tolist())
with torch.no_grad():
for l in model.ablation:
model.ablation[l] = None
for i, [ibz] in enumerate(pbar(loader)):
ibz = ibz.cuda()
for num_units in pbar(range(len(ordering) + 1)):
ablation = torch.zeros(feature_units, device=device)
ablation[ordering[:num_units]] = torch.tensor(
values[:num_units]).to(ablation.device, ablation.dtype)
model.ablation[layer] = ablation
tensor_images = model(ibz)
seg = segmenter.segment_batch(tensor_images, downsample=2)
mask = (seg == classnum).max(1)[0]
total_scores[num_units] += mask.sum().float().cpu()
return total_scores
if __name__ == '__main__':
main()
|