File size: 27,103 Bytes
92f0e98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fb22d2
 
 
 
 
 
 
 
 
 
92f0e98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import streamlit as st
import numpy as np
import PIL.Image
from st_clickable_images import clickable_images
import os
from monai.transforms import CenterSpatialCrop, ScaleIntensityRange, Orientation
import base64
from io import BytesIO
import torch
from glob import glob
from model import VerseFxClassifier
from netdissect import nethook, imgviz
import tempfile
import nibabel as nib
import pathlib

import warnings
warnings.filterwarnings("ignore")

# inlined Network Dissection results
unit_levels = torch.tensor([1.8715330362319946, 1.5618106126785278, 1.2870054244995117, 2.801919937133789, 1.1172661781311035, 2.2070984840393066, 2.3209457397460938, 2.022796392440796, 2.0127036571502686, 2.782788038253784, 1.013718843460083, 2.491750955581665, 1.5298184156417847, 1.7949274778366089, 2.1840720176696777, 2.73867130279541, 1.9927071332931519, 1.4070216417312622, 1.8516860008239746, 1.4621922969818115, 1.7988444566726685, 2.0956199169158936, 2.890246629714966, 0.9635668992996216, 1.8309086561203003, 1.8866947889328003, 1.8208155632019043, 1.3282618522644043, 2.787090301513672, 1.6975336074829102, 2.388171434402466, 3.1032965183258057, 1.996658444404602, 1.8226428031921387, 2.557448148727417, 1.8223134279251099, 1.2595659494400024, 1.8109630346298218, 2.6617250442504883, 1.9107582569122314, 2.254500389099121, 1.218552827835083, 3.087602376937866, 3.3800148963928223, 3.153672218322754, 2.919377326965332, 2.0350027084350586, 3.0219407081604004, 2.4654042720794678, 1.4958505630493164, 2.2895171642303467, 1.3284631967544556, 3.229510545730591, 1.9460035562515259, 1.855022668838501, 3.15183424949646, 2.582113742828369, 1.8321630954742432, 2.7707386016845703, 2.824443817138672, 2.662318468093872, 2.466081380844116, 1.0707639455795288, 1.856846570968628, 1.9820237159729004, 2.5840156078338623, 1.603718638420105, 2.741654396057129, 1.7408792972564697, 1.5616865158081055, 2.621121406555176, 2.187910318374634, 2.029402494430542, 2.3087165355682373, 2.3417551517486572, 2.4370405673980713, 2.363990545272827, 1.7908833026885986, 2.29636287689209, 2.5254483222961426, 3.2696034908294678, 1.4013628959655762, 1.645676851272583, 2.7126476764678955, 2.717543125152588, 1.0994248390197754, 1.9232852458953857, 1.985698938369751, 2.004666328430176, 2.385585069656372, 2.5118658542633057, 3.444154977798462, 2.0752625465393066, 2.9441027641296387, 1.6907892227172852, 2.695660352706909, 3.08571457862854, 1.8869487047195435, 1.5935581922531128, 2.224071502685547, 2.877380609512329, 3.0157597064971924, 2.1446480751037598, 2.4394376277923584, 3.298722267150879, 2.208728313446045, 1.9590588808059692, 1.789717197418213, 2.6814987659454346, 2.2261674404144287, 3.002722978591919, 3.0650651454925537, 1.9212583303451538, 1.6315948963165283, 1.6328997611999512, 2.4739739894866943, 0.9252153635025024, 3.089088201522827, 2.7511496543884277, 1.997342586517334, 2.5561487674713135, 1.6858017444610596, 2.7134108543395996, 2.513460159301758, 1.8604570627212524, 2.7962076663970947, 1.111690878868103, 2.1877119541168213, 2.1126585006713867, 2.9239501953125, 1.4319941997528076, 3.041599988937378, 2.2168679237365723, 1.792368769645691, 2.1387674808502197, 1.3679250478744507, 1.347702145576477, 3.0506792068481445, 1.5423274040222168, 1.8090440034866333, 1.869529366493225, 2.8993425369262695, 1.5416679382324219, 3.003296375274658, 3.1893210411071777, 2.3816075325012207, 2.281187057495117, 2.7733864784240723, 1.3033744096755981, 1.4627212285995483, 1.942519187927246, 1.4943166971206665, 2.48635196685791, 1.9112900495529175, 2.908750534057617, 1.9310427904129028, 1.8946770429611206, 1.2220033407211304, 2.0171048641204834, 1.197824478149414, 2.093484878540039, 2.240743398666382, 1.4367271661758423, 1.5200153589248657, 2.6623482704162598, 2.34277606010437, 2.378328323364258, 3.4981000423431396, 1.8303442001342773, 2.1322264671325684, 1.8304965496063232, 2.0963211059570312, 1.932998776435852, 0.9879118800163269, 1.989233136177063, 2.0391933917999268, 3.078193187713623, 2.9010426998138428, 1.451486587524414, 1.4458937644958496, 3.3362858295440674, 0.8172016143798828, 2.8464856147766113, 2.3619463443756104, 2.0269312858581543, 1.87027108669281, 2.5867714881896973, 1.0947588682174683, 2.485373020172119, 1.4596120119094849, 2.9054574966430664, 2.267271041870117, 1.9901957511901855, 1.708791971206665, 1.5335347652435303, 3.0039384365081787, 1.581254482269287, 1.6688708066940308, 2.138035535812378, 1.8489503860473633, 1.463232398033142, 2.745103597640991, 1.7890992164611816, 3.209639310836792, 2.186699628829956, 1.384399175643921, 2.347090482711792, 2.911564350128174, 2.7910614013671875, 3.0139355659484863, 2.8508076667785645, 3.1651434898376465, 2.020735263824463, 1.3879002332687378, 1.347353458404541, 1.3600330352783203, 1.563052773475647, 2.427166223526001, 2.3583383560180664, 2.0502967834472656, 1.0467418432235718, 1.5168964862823486, 2.550285816192627, 2.2569706439971924, 1.280961275100708, 2.153566360473633, 0.8621286749839783, 1.5903816223144531, 1.6175390481948853, 1.2808561325073242, 2.129512310028076, 1.923080563545227, 2.4000368118286133, 2.7758114337921143, 2.756497859954834, 2.8936665058135986, 1.9632121324539185, 1.4698351621627808, 2.9193220138549805, 2.2707347869873047, 2.1808905601501465, 2.915626049041748, 2.199504852294922, 2.225417375564575, 1.8788528442382812, 1.6902912855148315, 2.703303098678589, 1.6111797094345093, 1.4749184846878052, 2.7335896492004395, 1.1770113706588745, 1.5911366939544678, 2.5799360275268555, 2.450134515762329, 1.584707498550415, 2.0303263664245605, 1.5416966676712036, 1.6474940776824951, 3.166107654571533, 1.8914194107055664, 2.731400489807129, 3.456698179244995, 3.1407928466796875, 2.657524585723877, 1.8312366008758545, 1.3835384845733643, 1.3457938432693481, 1.1902421712875366, 1.739147663116455, 2.8404054641723633, 1.5782982110977173, 1.4647060632705688, 1.3077998161315918, 1.8057410717010498, 1.1732816696166992, 1.4494800567626953, 2.1183741092681885, 3.5306854248046875, 2.348907470703125, 1.5650557279586792, 1.6930912733078003, 2.298933267593384, 1.1758023500442505, 1.6107817888259888, 1.3251513242721558, 2.080108404159546, 1.862548589706421, 3.099520206451416, 2.8438494205474854, 1.6832661628723145, 2.074307680130005, 2.0457262992858887, 2.8403425216674805, 3.117814540863037, 2.058823823928833, 2.234037160873413, 1.2487999200820923, 1.7322322130203247, 2.6813132762908936, 2.924269199371338, 1.7503197193145752, 3.2688212394714355, 1.8045146465301514, 3.1042702198028564, 2.327272891998291, 2.7761642932891846, 2.3101589679718018, 2.8489952087402344, 2.132847547531128, 1.554833173751831, 1.3879495859146118, 1.8847209215164185, 1.728200912475586, 1.6019946336746216, 3.04852294921875, 3.0847041606903076, 2.528338670730591, 2.277801275253296, 3.1020517349243164, 2.7520859241485596, 3.03950834274292, 1.8526620864868164, 2.6675875186920166, 2.201525926589966, 1.3852479457855225, 1.744421362876892, 2.172621488571167, 2.681896924972534, 2.4530863761901855, 2.0969560146331787, 1.3115235567092896, 2.049104928970337, 1.7683310508728027, 1.7026116847991943, 2.3060457706451416, 3.208275318145752, 2.6523375511169434, 1.7658361196517944, 1.9047954082489014, 2.9763565063476562, 1.834631323814392, 3.142353057861328, 1.9534238576889038, 1.7625831365585327, 2.1041769981384277, 1.945776104927063, 2.970412015914917, 1.8245426416397095, 1.4031907320022583, 1.3985518217086792, 2.8565142154693604, 1.8306998014450073, 2.6509435176849365, 1.452415108680725, 2.7498743534088135, 2.0770175457000732, 1.8407188653945923, 1.5940998792648315, 2.4943857192993164, 3.0113513469696045, 3.450936794281006, 1.2603273391723633, 1.5098024606704712, 1.647451400756836, 2.344951868057251, 2.499359369277954, 1.9027211666107178, 1.6656138896942139, 1.5507005453109741, 2.177579641342163, 1.4274533987045288, 2.7495903968811035, 1.4635711908340454, 2.0104260444641113, 2.4939937591552734, 2.069014072418213, 1.3013184070587158, 3.4216034412384033, 1.9525243043899536, 2.196475028991699, 2.7452564239501953, 2.1965861320495605, 2.8216114044189453, 2.2089548110961914, 2.936760902404785, 1.3354514837265015, 1.3799076080322266, 2.2054338455200195, 1.3158196210861206, 1.084631085395813, 2.4761247634887695, 1.4672796726226807, 1.7008095979690552, 1.5144485235214233, 1.7634273767471313, 2.5879948139190674, 2.024614095687866, 1.7365692853927612, 1.5214873552322388, 1.1093666553497314, 1.7518495321273804, 2.188833713531494, 3.439579963684082, 2.6817214488983154, 1.636168122291565, 2.1104257106781006, 3.0666251182556152, 3.1396965980529785, 1.7993018627166748, 1.897646427154541, 1.2042944431304932, 2.8433687686920166, 2.068439483642578, 2.4039862155914307, 1.3701140880584717, 1.262689471244812, 1.827138066291809, 2.1528568267822266, 3.259542465209961, 1.7049492597579956, 1.9919352531433105, 2.1563854217529297, 2.035381317138672, 3.0388429164886475, 1.8345075845718384, 2.22445011138916, 1.5946440696716309, 2.3479206562042236, 1.281639575958252, 1.4048471450805664, 1.0306495428085327, 1.05494225025177, 1.9470269680023193, 1.6934491395950317, 2.1934640407562256, 2.6225905418395996, 1.974666714668274, 3.4361391067504883, 1.148988127708435, 2.7689907550811768, 2.478999614715576, 2.292860984802246, 1.380311131477356, 1.8914124965667725, 1.251215934753418, 1.3892083168029785, 3.1640305519104004, 2.3226025104522705, 2.3283731937408447, 3.2135708332061768, 1.2665305137634277, 2.8611419200897217, 2.735239267349243, 1.348517894744873, 1.2256826162338257, 2.5687448978424072, 1.9984424114227295, 2.913726568222046, 1.79617440700531, 3.3642163276672363, 1.405514121055603, 1.7745602130889893, 2.080112934112549, 2.5899147987365723, 1.9730525016784668, 1.6167746782302856, 1.2985221147537231, 1.6463950872421265, 1.2983338832855225, 3.4439616203308105, 1.8814938068389893, 1.1827762126922607, 3.0138072967529297, 2.0302090644836426, 3.2060086727142334, 1.7749220132827759, 1.6361336708068848, 2.207552194595337, 3.1703994274139404, 2.6205763816833496, 2.2056334018707275, 1.3571845293045044, 2.4915218353271484, 1.3841928243637085, 1.9503673315048218, 1.6178065538406372, 3.2435460090637207, 1.1473424434661865, 2.2226922512054443, 1.9872846603393555, 2.009683132171631, 3.1938722133636475, 3.248166799545288, 2.4461867809295654, 1.8230010271072388, 2.1673691272735596, 2.776118278503418, 2.054086685180664, 1.6877385377883911, 2.3526558876037598, 2.648297071456909, 1.3525688648223877, 2.819364309310913, 2.9533910751342773, 1.636002540588379, 1.5173200368881226, 2.315584421157837, 1.5832545757293701, 3121535301208496, 1.679909348487854, 2.9136874675750732, 2.4349215030670166])
corr_rank = {299: 98, 194: 401, 281: 441, 1: 419, 289: 227, 65: 268, 23: 101, 453: 418, 321: 362, 259: 431, 257: 446, 477: 17, 92: 497, 17: 234, 314: 60, 331: 354, 315: 123, 318: 192, 445: 233, 238: 240, 311: 489, 265: 7, 126: 22, 431: 254, 223: 10, 179: 14, 362: 230, 448: 78, 478: 199, 418: 197, 139: 249, 403: 111, 262: 206, 316: 282, 150: 34, 142: 12, 444: 288, 261: 147, 180: 205, 413: 455, 322: 11, 5: 400, 474: 198, 167: 204, 226: 257, 230: 304, 225: 406, 482: 222, 373: 77, 352: 164, 2: 299, 329: 136, 152: 74, 271: 420, 386: 369, 377: 196, 165: 13, 229: 106, 457: 170, 192: 466, 99: 440, 214: 316, 461: 511, 19: 430, 82: 337, 505: 344, 199: 457, 416: 329, 484: 390, 104: 83, 496: 210, 465: 301, 462: 484, 361: 91, 231: 317, 100: 32, 467: 477, 63: 310, 421: 320, 273: 387, 368: 307, 449: 220, 385: 328, 8: 336, 432: 168, 217: 182, 255: 436, 366: 461, 151: 487, 67: 159, 14: 503, 36: 27, 131: 131, 112: 300, 37: 470, 29: 391, 163: 449, 510: 212, 21: 303, 202: 402, 409: 277, 158: 315, 16: 464, 44: 173, 197: 479, 410: 35, 495: 366, 341: 163, 425: 124, 77: 296, 38: 67, 175: 498, 181: 252, 248: 396, 15: 65, 301: 149, 18: 172, 81: 372, 154: 237, 306: 504, 123: 176, 105: 408, 185: 456, 145: 338, 398: 99, 40: 331, 451: 184, 108: 57, 94: 425, 213: 6, 286: 30, 203: 120, 39: 404, 64: 463, 10: 126, 348: 241, 28: 295, 278: 207, 216: 216, 224: 263, 330: 421, 303: 52, 206: 395, 417: 166, 354: 291, 228: 264, 446: 154, 509: 346, 440: 385, 85: 201, 363: 313, 121: 393, 423: 232, 277: 162, 86: 188, 483: 411, 364: 505, 374: 287, 176: 251, 78: 415, 351: 374, 227: 414, 51: 39, 250: 368, 488: 363, 288: 253, 434: 501, 68: 323, 276: 469, 469: 115, 130: 248, 168: 333, 397: 428, 365: 25, 128: 214, 3: 185, 26: 447, 307: 183, 419: 417, 222: 133, 493: 157, 382: 4, 319: 193, 60: 40, 327: 416, 433: 424, 430: 62, 345: 460, 486: 155, 35: 18, 45: 267, 407: 112, 507: 375, 141: 23, 260: 96, 338: 492, 387: 454, 189: 85, 182: 58, 282: 191, 350: 153, 323: 427, 143: 179, 472: 26, 302: 361, 0: 378, 244: 379, 426: 355, 215: 334, 140: 281, 253: 318, 489: 494, 267: 305, 111: 33, 346: 152, 390: 139, 210: 105, 212: 273, 188: 413, 239: 258, 439: 208, 391: 308, 378: 422, 312: 382, 97: 224, 491: 63, 162: 359, 389: 265, 272: 97, 443: 386, 75: 118, 245: 297, 263: 148, 284: 107, 137: 178, 415: 399, 209: 161, 201: 42, 335: 90, 135: 73, 310: 432, 122: 29, 172: 405, 328: 478, 173: 215, 308: 459, 480: 491, 412: 388, 494: 36, 476: 246, 479: 9, 9: 64, 344: 383, 119: 332, 55: 174, 103: 202, 395: 506, 56: 28, 73: 512, 353: 326, 120: 94, 339: 218, 12: 266, 193: 16, 295: 458, 106: 495, 287: 217, 304: 228, 124: 499, 148: 250, 422: 483, 264: 46, 113: 3, 166: 103, 369: 327, 156: 2, 498: 321, 334: 151, 169: 442, 506: 48, 4: 352, 43: 158, 249: 135, 31: 127, 233: 134, 427: 356, 375: 510, 107: 409, 183: 144, 320: 89, 138: 465, 211: 189, 41: 358, 292: 51, 79: 235, 456: 389, 116: 130, 280: 306, 343: 342, 473: 438, 357: 351, 511: 93, 450: 209, 279: 451, 144: 236, 293: 108, 187: 256, 11: 171, 127: 5, 471: 302, 313: 319, 13: 330, 468: 380, 291: 340, 243: 480, 475: 261, 487: 294, 160: 41, 254: 481, 429: 8, 59: 213, 326: 150, 57: 142, 125: 247, 359: 298, 87: 70, 258: 95, 70: 69, 383: 486, 347: 325, 497: 493, 69: 223, 129: 271, 492: 156, 384: 219, 91: 160, 360: 137, 74: 117, 285: 398, 340: 473, 240: 121, 424: 467, 266: 397, 508: 140, 178: 50, 400: 474, 388: 259, 235: 59, 420: 433, 376: 243, 294: 452, 232: 353, 402: 231, 49: 371, 317: 341, 408: 423, 372: 276, 48: 102, 102: 269, 256: 472, 428: 167, 171: 439, 275: 349, 435: 245, 84: 175, 134: 203, 71: 116, 161: 410, 324: 194, 342: 496, 207: 43, 242: 360, 25: 284, 218: 239, 499: 37, 195: 145, 83: 187, 186: 238, 283: 286, 247: 75, 490: 407, 464: 345, 436: 384, 164: 488, 219: 365, 118: 49, 251: 445, 503: 211, 394: 448, 190: 226, 153: 272, 62: 79, 170: 290, 96: 82, 80: 143, 305: 53, 157: 412, 191: 364, 332: 350, 7: 507, 101: 72, 399: 335, 437: 169, 333: 502, 447: 475, 401: 462, 290: 482, 252: 24, 370: 109, 438: 55, 452: 125, 241: 312, 297: 429, 184: 15, 93: 81, 337: 476, 463: 221, 349: 229, 208: 44, 61: 289, 136: 177, 355: 242, 20: 500, 356: 76, 381: 47, 33: 370, 296: 275, 274: 426, 117: 84, 442: 490, 458: 260, 34: 186, 236: 86, 481: 468, 309: 373, 269: 88, 455: 113, 500: 255, 66: 471, 58: 434, 174: 119, 396: 110, 268: 87, 504: 322, 155: 435, 298: 122, 200: 181, 6: 485, 72: 129, 76: 508, 109: 392, 204: 339, 46: 347, 237: 274, 196: 367, 454: 293, 110: 21, 90: 19, 502: 38, 325: 453, 52: 128, 95: 71, 159: 225, 441: 278, 459: 92, 42: 56, 405: 403, 485: 200, 54: 444, 205: 285, 32: 66, 30: 357, 336: 61, 234: 190, 379: 244, 393: 309, 146: 394, 404: 292, 221: 348, 147: 180, 115: 270, 53: 314, 24: 443, 371: 165, 246: 146, 411: 31, 88: 1, 133: 324, 380: 138, 22: 280, 98: 20, 460: 114, 114: 262, 27: 141, 466: 343, 501: 279, 358: 195, 470: 381, 50: 376, 132: 311, 270: 437, 220: 45, 47: 68, 89: 80, 149: 132, 367: 283, 406: 100, 392: 450, 177: 104, 198: 509, 414: 54, 300: 377}

# inlined and adapted pytorch_grad_cam/activations_and_gradients.py
class ActivationsAndGradients:
    """ Class for extracting activations and
    registering gradients from targetted intermediate layers """

    def __init__(self, model, target_layer, reshape_transform):
        self.model = model
        self.gradients = []
        self.activations = []
        self.reshape_transform = reshape_transform

        target_layer.register_forward_hook(self.save_activation)

        #Backward compitability with older pytorch versions:
        if hasattr(target_layer, 'register_full_backward_hook'):
            target_layer.register_full_backward_hook(self.save_gradient)
        else:
            target_layer.register_backward_hook(self.save_gradient)

    def save_activation(self, module, input, output):
        activation = output[0]
        if self.reshape_transform is not None:
            activation = self.reshape_transform(activation)
        self.activations.append(activation.cpu().detach())

    def save_gradient(self, module, grad_input, grad_output):
        # Gradients are computed in reverse order
        grad = grad_output[0]
        if self.reshape_transform is not None:
            grad = self.reshape_transform(grad)
        self.gradients = [grad.cpu().detach()] + self.gradients

    def __call__(self, x):
        self.gradients = []
        self.activations = []
        return self.model(x)

# inlined and adapted pytorch_grad_cam/grad_cam.py
class DetectorGradCAM:
    def __init__(self, model, target_layer, use_cuda=False, reshape_transform=None):
        self.model = model.eval()
        self.target_layer = target_layer
        self.cuda = use_cuda
        if self.cuda:
            self.model = model.cuda()
        self.reshape_transform = reshape_transform
        self.activations_and_grads = ActivationsAndGradients(self.model,
            target_layer, reshape_transform)

    def forward(self, input_img):
        return self.model(input_img)

    def get_cam_weights(self, input_tensor, target_category, activations, grads, k=5):
        a = torch.tensor(activations)
        return torch.topk((a * (a > unit_levels.view(unit_levels.shape[0], 1, 1, 1).repeat(1, 8, 8, 8)))[0].sum(dim=(1,2,3)), k=k).indices

    def get_loss(self, output, target_category):
        loss = 0
        for i in range(len(target_category)):
            loss = loss + output[i, target_category[i]]
        return loss

    def get_cam_image(self, input_tensor, target_category, activations, grads, eigen_smooth=False):
        weights = self.get_cam_weights(input_tensor, target_category, activations, grads)
        weighted_activations = weights[:, :, None, None] * activations
        cam = weighted_activations.sum(axis=1)
        return cam

    def forward(self, input_tensor, target_category=None, k=5):

        if self.cuda:
            input_tensor = input_tensor.cuda()

        output = self.activations_and_grads(input_tensor)

        if type(target_category) is int:
            target_category = [target_category] * input_tensor.size(0)

        if target_category is None:
            target_category = np.argmax(output.cpu().data.numpy(), axis=-1)
        else:
            assert(len(target_category) == input_tensor.size(0))

        self.model.zero_grad()
        loss = self.get_loss(output, target_category)
        loss.backward(retain_graph=True)

        activations = self.activations_and_grads.activations[-1].cpu().data.numpy()
        grads = self.activations_and_grads.gradients[-1].cpu().data.numpy()

        return self.get_cam_weights(input_tensor, target_category, activations, grads, k=k).tolist()

class AttrDict(dict):
    def __init__(self, *args, **kwargs):
        super(AttrDict, self).__init__(*args, **kwargs)
        self.__dict__ = self

# hide header bar for print
hide_streamlit_style = """
<style>
header {visibility:hidden;}
</style>
"""

st.markdown(hide_streamlit_style, unsafe_allow_html=True)

received_input = None

scale = ScaleIntensityRange(a_min=-1000, a_max=1000, b_min=0, b_max=1, clip=True)
crop = CenterSpatialCrop(roi_size=(64,64,64))

preprocess = lambda arr: scale(crop(arr[None, ...].clip(-1000, 1000)))
to_image = lambda v: PIL.Image.fromarray((255*v[0,:,:,v.shape[-1]//2]).astype('uint8')).convert('RGB')

def to_base64(image: PIL.Image):
    buffered = BytesIO()
    image.save(buffered, format="PNG")
    return "data:image/png;base64," + base64.b64encode(buffered.getvalue()).decode("utf-8")

def base64_slice(path: str):
    return to_base64(to_image(preprocess(np.load(path))))

def bundle_builder(path: str, local=True, desc=""):
    if local: path = os.path.join(".", path)

    vertebra = np.float32(preprocess(np.load(path)))
    slice = to_base64(to_image(vertebra))

    return (slice, desc, vertebra)

examples = [
    bundle_builder("examples/l4.npy", desc="L4 - defect in superior endplate"),
    bundle_builder("examples/l5.npy", desc="L5 - no fracture"),
    bundle_builder("examples/l1.npy", desc="L1 - wedge-shaped deformity"),
    bundle_builder("examples/l1compression.npy", desc="L1 - severe compression fracture"),
    bundle_builder("examples/t5.npy", desc="T5 - no fracture"),
    bundle_builder("examples/l2.npy", desc="L2 - wedge-shaped deformity"),
    bundle_builder("examples/l1.npy", desc="L1 - fish-shaped deformity"),
    bundle_builder("examples/l1compression2.npy", desc="L1 - severe compression fracture"),
    bundle_builder("examples/t11.npy", desc="T11 - no fracture"),
    bundle_builder("examples/l3.npy", desc="L3 - defect in inferior endplate (false negative)"),
]

with st.empty():
    with st.container():
        upload = st.file_uploader("Upload vertebra to classify (nii, nii.gz, npy)")

        if upload is not None:
            suffix = ''.join(pathlib.Path(upload.name).suffixes)
            with tempfile.NamedTemporaryFile(suffix=suffix) as fp:
                fp.write(upload.getvalue())
                fp.seek(0)

                if 'nii' in suffix:
                    try:
                        nii = nib.load(fp.name)
                    except:
                        raise Exception("Unable to load uploaded NIfTI file. Please ensure that it has the correct file extensions.")

                    nifti_data = nii.get_fdata()
                    data = Orientation(axcodes='IPL')(nifti_data[None, ...], affine=nii.affine)[0][0]
                elif 'npy' in suffix:
                    try:
                        data = np.load(fp)
                    except:
                        raise Exception("Unable to load provided NumPy file.")
                else:
                    raise Exception("Invalid input data format. Please provide a NIfTI or NumPy array file.")

                assert len(data.shape) == 3, "Invalid number of dimensions. Expects three-dimensional input."
                assert all([a >= 64 for a in data.shape]), "Invalid shape. Shape must not be smaller than 64x64x64."

                fp.close()

                vertebra = np.float32(preprocess(data))
                slice = to_base64(to_image(vertebra))

                received_input = (slice, upload.name, vertebra)

        with st.container():
            st.caption("Or pick one of these examples:")

            clicked = clickable_images(
                [ex[0] for ex in examples],
                titles=[ex[1] for ex in examples],
                div_style={"display": "flex", "justify-content": "left", "flex-wrap": "wrap"},
                img_style={"margin": "0 5px 5px 0", "height": "135px"},
            )

            if clicked > -1:
                received_input = examples[clicked]

    if received_input is not None:
        with st.container():
            col1, col2 = st.columns([1,3])
            with col1:
                st.image(received_input[0], width=140)
            with col2:
                top_container = st.container()
                top_container.write("**Concept Visualization**")
                top_container.write(f"Input: {received_input[1]}")
            with st.spinner('Running inference'):
                saved_checkpoint = "moonlit-flower-278.ckpt"

                # TODO inline config
                checkpoint = torch.load(saved_checkpoint, map_location="cpu")

                checkpoint['hyper_parameters']['dataset_path'] = '.'
                checkpoint['hyper_parameters']['batch_size'] = 1

                module = VerseFxClassifier.load_from_checkpoint(saved_checkpoint, hparams=checkpoint['hyper_parameters'], map_location="cpu")
                model = module.backbone

                model.eval()

                sample = torch.tensor(received_input[2][None, ...])

                cam = DetectorGradCAM(model, model.down_tr512, use_cuda=False)

                detectors = cam.forward(input_tensor=sample, target_category=0, k=5)
                ranks = [corr_rank[unit] for unit in detectors]

                model = nethook.InstrumentedModel(model)
                model.retain_layer("down_tr512")

                pred = (torch.sigmoid(model(sample)) > 0.5).long().item()

                acts = model.retained_layer("down_tr512")[0]

                ld_res = acts.shape[-1]
                img_slices = torch.linspace(int(64/ld_res/2), 64-int(64/ld_res/2), ld_res, dtype=torch.long)

                iv = imgviz.ImageVisualizer(224, image_size=64, source="zc", percent_level=0.99)

            top_container.write(f"Prediction: {'fracture' if pred==1 else 'no fracture'}")

            image_margin = """
            <style>
            img{margin-right:5px}*/
            </style>
            """
            st.markdown(image_margin, unsafe_allow_html=True)

            for i, detector in enumerate(detectors):
                def paper_typo_fix(d):
                    # in the paper, unit 424 is mistakenly referred to as unit 22.
                    # to ensure consistency, we simply swap the label of both
                    if d != 424 and d!= 22: return str(d)
                    if d == 424: return "22"
                    else: return "424"

                st.markdown(f"Detector unit #{paper_typo_fix(detector)} (relevance rank {i+1}, positive correlation rank {ranks[i]})")
                concepts = glob(f"concepts/{detector}_*.png")
                if len(concepts) == 0:
                    st.caption("No statistically significant activations, unable to show general concept")
                else:
                    st.caption("General concept")
                    sorted_concepts = sorted(concepts, key=lambda x: int(x.replace('.png', '').split('/')[-1].split('_')[1]))
                    st.image([to_base64(PIL.Image.open(c)) for c in sorted_concepts], width=75)
                activations = [to_base64(PIL.Image.fromarray(iv.pytorch_masked_image(
                                (sample[0, ..., img_slices[slice]]).repeat(3, 1, 1),
                                acts[..., slice],
                                detector,
                                level=unit_levels[detector]).permute(1,2,0).cpu().numpy())) for slice in range(0, ld_res)]
                st.caption("Image-specific activation")
                st.image(activations, width=75)

                st.markdown('<div style="margin-top:20px;border-top: 1px solid rgba(49, 51, 63, 0.2);margin-bottom:40px"></div>', unsafe_allow_html=True)

            def on_click(*args, **kwargs):
                # force reload of the page to reset internal state
                st.markdown('<meta http-equiv="refresh" content="0">', unsafe_allow_html=True)

            st.button("Reset", on_click=on_click)