File size: 10,712 Bytes
8ca85a6
 
 
 
 
 
 
 
 
 
 
 
 
 
b0e2bed
 
8ca85a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0e2bed
8ca85a6
 
 
 
 
 
 
 
 
 
 
 
b0e2bed
8ca85a6
 
 
 
 
 
 
 
b0e2bed
 
8ca85a6
 
 
 
 
b0e2bed
8ca85a6
 
 
 
 
 
b0e2bed
 
 
 
8ca85a6
 
 
 
 
 
 
 
 
 
b0e2bed
8ca85a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f03acf
 
 
 
 
 
 
 
8ca85a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
257f1ff
8ca85a6
 
 
 
3f03acf
 
 
 
 
8ca85a6
 
 
 
 
 
 
 
 
8bb9f90
8ca85a6
 
 
 
 
 
 
 
 
 
 
3f03acf
8ca85a6
 
 
b0e2bed
 
3f03acf
 
 
d883ba3
 
 
 
 
3f03acf
 
 
b0e2bed
 
 
 
 
 
3f03acf
 
 
 
 
b0e2bed
 
3f03acf
 
 
 
 
 
8ca85a6
3f03acf
8bb9f90
 
 
 
3f03acf
8bb9f90
3f03acf
 
 
 
 
 
 
 
8ca85a6
8bb9f90
8ca85a6
 
47355e9
8bb9f90
 
3f03acf
 
 
47355e9
 
 
 
8bb9f90
8ca85a6
 
 
 
 
8bb9f90
b0e2bed
8ca85a6
 
 
3f03acf
8ca85a6
 
3f03acf
8ca85a6
 
 
 
 
b0e2bed
8ca85a6
 
 
 
 
417ec96
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import gradio as gr
import torch
from modelovae import Node, GRASSEncoder, GRASSDecoder
import networkx as nx
import numpy as np
import matplotlib.pyplot as plt
from src.mesh_gen.modelador import GrafoCentros
import trimesh as tm
#import pymeshlab
import plotly.graph_objects as go
from torch.utils.data import Dataset, DataLoader
import os
from resamplear import *
import open3d as o3d
import pymeshlab as pm


from vedo import *
def count_fn(f):
    def wrapper(*args, **kwargs):
        wrapper.count += 1
        return f(*args, **kwargs)
    wrapper.count = 0
    return wrapper


@count_fn
def createNode(data, radius, left = None, right = None):
        """
        Utility function to create a node.
        """
        return Node(data, radius, left, right)

def decode_testing(v, max, decoder, mult, min):
    def decode_node(v, max, decoder, mult, min, nbif):

        cl = decoder.nodeClassifier(v)
        _, label = torch.max(cl, 1)
        label = label.data
        
        
        if label == 1 and createNode.count <= max:
            #print("label 1")
            right, radius = decoder.internalDecoder(v)
                
            d = createNode(1, radius) 
            
            d.right = decode_node(right, max, decoder, mult, min, nbif = nbif)
            return d

        elif label == 2 and createNode.count <= max:
            #print("label 2")
            left, right, radius = decoder.bifurcationDecoder(v)
                
            d = createNode(1, radius)
            
            d.right = decode_node(right, max, decoder, mult, min, nbif = nbif+1)
            d.left = decode_node(left, max, decoder, mult, min, nbif = nbif+1)
        
            return d

        elif label == 0 : ##output del classifier
            #print("label 0")
            if nbif >= 2:
                #print("mayor que min")
                radio = decoder.featureDecoder(v)
                return createNode(1,radio)
        
            else:
                #print("menor que min")
                left, right, radius = decoder.bifurcationDecoder(v)
                d = createNode(1, radius)
                d.right = decode_node(right, max, decoder, mult, min, nbif = nbif+1)
                d.left = decode_node(left, max, decoder, mult, min, nbif = nbif+1)
                return d

        '''
        elif label == 0 : ##output del classifier
            print("0", createNode.count)
            radio = decoder.featureDecoder(v)
            return createNode(1,radio)  
        '''

    createNode.count = 0
    dec = decode_node (v, max, decoder, mult, min, nbif = 0)

    return dec

def numerar_nodos(root, count):
    if root is not None:
        numerar_nodos(root.left, count)
        root.data = len(count)
        count.append(1)
        numerar_nodos(root.right, count)
        return 

def traverse_xy(root, tree):
       
        if root is not None:
            traverse_xy(root.left, tree)
            print(root.radius.cpu().detach().numpy())
            tree.append([root.radius.cpu().detach().numpy()[0][0], root.radius.cpu().detach().numpy()[0][1]])
            traverse_xy(root.right, tree)
            return tree

def tr(root):
        if root is not None:
            tr(root.left)
            root.radius[0][3]=root.radius[0][3]/20
            if root.radius[0][3]<0:
                root.radius[0][3]=0
            tr(root.right)
            return
def tr2(root):
        if root is not None:
            tr2(root.left)
            root.radius[3]=root.radius[3]/10
            if root.radius[3]<0:
                root.radius[3]=0
            tr2(root.right)
            return
use_gpu = True
device = torch.device("cuda:0" if use_gpu and torch.cuda.is_available() else "cpu")

def traversefeatures(root, features):
       
    if root is not None:
        traversefeatures(root.left, features)
        features.append(root.radius.tolist()[0][3])
        traversefeatures(root.right, features)
        return features
    
def my_collate(batch):
    return batch

def deserialize(data):
    if  not data:
        return 
    nodes = data.split(';')  
    #print("node",nodes[3])
    def post_order(nodes):
                
        if nodes[-1] == '#':
            nodes.pop()
            return None
        node = nodes.pop().split('_')
        data = int(node[0])
        radius = node[1]
        rad = radius.split(",")
        rad [0] = rad[0].replace('[','')
        rad [3] = rad[3].replace(']','')
        r = []
        for value in rad:
            r.append(float(value))
        #r =[float(num) for num in radius if num.isdigit()]
        r = torch.tensor(r, device=device)
        #breakpoint()
        root = createNode(data, r)
        root.right = post_order(nodes)
        root.left = post_order(nodes)
        
        return root    
    return post_order(nodes)    


def read_tree(filename, dir):
    with open('./' +dir +'/' +filename, "r") as f:
        byte = f.read() 
        return byte
class tDataset(Dataset):
    def __init__(self, l, dir, transform=None):
        self.names = l
        self.transform = transform
        self.data = [] #lista con las strings de todos los arboles
        for file in self.names:
            self.data.append(read_tree(file, dir))
        self.trees = []
        for tree in self.data:
            deserial = deserialize(tree)
            self.trees.append(deserial)

    def __len__(self):
        return len(self.names)

    def __getitem__(self, idx):
        tree = self.trees[idx]
        name = self.names[idx]
        return tree, name

batch_size = 1

def prepararAristas( grafo ):
    for arista in grafo.edges():
        nx.set_edge_attributes( grafo, {arista : {'procesada':False}})

t_list = os.listdir("./nuevostrees/" )
dataset = tDataset(t_list, "./nuevostrees/")
data_loader = DataLoader(dataset, batch_size = batch_size, shuffle=True, collate_fn=my_collate)

def predict():
    success = False
    while not success:
        G = nx.Graph()

        
        z = torch.randn(1, latent_size)
        generated_images = decode_testing(z, 30, Grassdecoder, mult, 1)
        count = []
        numerar_nodos(generated_images, count)
        #tr(generated_images)
        generated_images.toGraph( G, 0, True, flag = 0)
        r_list = []
        r_list = traversefeatures(generated_images, r_list)
        max_radius = max(r_list)
        min_radius = min(r_list)
        
        '''
        #generated_images = iter(data_loader).next()[0]
        generated_images = next(iter(data_loader))[0]
        filename = generated_images[1]
        print("filename", filename)
        bifurcation_nodes = []
        leaf_nodes = []
       
        generated_images[0].toGraph( G, 0, False, 0)
       
        
        generated_images = generated_images[0]
        original_mesh = load("mallas/"+filename.split("_")[0]+".obj")
        write(original_mesh, "original.obj")
        #generated_images.toGraph( graph, 0, False, flag = 0)
        #tr2(generated_images)
        '''
        
        #nx.write_gpickle(graph, "grafo0.gpickle" )
        for arista in G.edges():
            nx.set_edge_attributes( G, {arista : {'procesada':False}})
        #graph_resampled = resamplear(G, puntosPorUnidad=5)
        graph_resampled = G
        prepararAristas(graph_resampled)
        graphOfCenters = GrafoCentros(graph_resampled)

        if abs(max_radius/min_radius)<10 :
            try:
                graphOfCenters.tile()
                mesh = tm.Trimesh( graphOfCenters.getVertices(), graphOfCenters.getCaras() )
                #mesh_o3d = mesh.as_open3d
                mesh_o3d = o3d.geometry.TriangleMesh()
                # Convert vertices and faces
                mesh_o3d.vertices = o3d.utility.Vector3dVector(mesh.vertices)
                mesh_o3d.triangles = o3d.utility.Vector3iVector(mesh.faces)
                m2 = mesh_o3d 
                o3d.io.write_triangle_mesh("sinsub.obj", m2)
                mesh_o3d = mesh_o3d.subdivide_loop(3)
                o3d.io.write_triangle_mesh("output.obj", mesh_o3d)
                ms = pm.MeshSet()
                ms.load_new_mesh('output.obj')
                ms.compute_selection_by_self_intersections_per_face()
                if ms.current_mesh().selected_face_number() > 0:
                    raise Exception("autointerseccion")
                v_matrix = np.asarray(mesh_o3d.vertices )
                f_matrix = np.asarray(mesh_o3d.triangles )
                v_matrix_2 = np.asarray(m2.vertices )
                f_matrix_2 = np.asarray(m2.triangles )
                success = True
                

            except Exception as e:
                print("No se pudo generar")
                print(str(e))
                pass
        else:
            print("ratio", max_radius/min_radius)
            pass
    '''
    M = max((max(v_matrix[:,0]) - min(v_matrix[:,0])), (max(v_matrix[:,1]) - min(v_matrix[:,1])), (max(v_matrix[:,2]) - min(v_matrix[:,2])))
    x = (v_matrix[:,0] - min(v_matrix[:,0]))/M
    y = (v_matrix[:,1] - min(v_matrix[:,1]))/ M
    z = (v_matrix[:,2] - min(v_matrix[:,2]))/M
    '''

    M = max((max(v_matrix[:,0]) - min(v_matrix[:,0])), (max(v_matrix[:,1]) - min(v_matrix[:,1])), (max(v_matrix[:,2]) - min(v_matrix[:,2])))
    x = (v_matrix[:,0] - np.mean(v_matrix[:,0]))/M
    y = (v_matrix[:,1] - np.mean(v_matrix[:,1]))/ M
    z = (v_matrix[:,2] - np.mean(v_matrix[:,2]))/M

    minimo = min(min(x), min(y), min(z))
    maximo = max(max(x), max(y), max(z))
  
    fig = go.Figure(go.Mesh3d(
            x=x, y=y, z=z, 
            i=f_matrix[:,0], j=f_matrix[:,1], k=f_matrix[:,2], 
            color='red'))
    
    fig.update_layout(
        scene = dict(
            xaxis_range=[minimo, maximo],
            yaxis_range=[minimo, maximo],
            zaxis_range=[minimo, maximo],
            aspectratio=dict(x = 1, y = 1, z = 1),
            xaxis = dict(visible=False),
            yaxis = dict(visible=False),
            zaxis =dict(visible=False),
        ))
    fig2 = go.Figure(go.Mesh3d(
            x=v_matrix_2[:,0], y=v_matrix_2[:,1], z=v_matrix_2[:,2], 
            i=f_matrix_2[:,0], j=f_matrix_2[:,1], k=f_matrix_2[:,2], 
            color='red'))
    

    
    #o3d.io.write_triangle_mesh("generadas/"+filename.split("_")[0]+".obj", mesh_o3d)
    return fig


a = [1.,1.,1.]
mult = torch.Tensor(a)
latent_size = 32
Grassdecoder = GRASSDecoder(latent_size=latent_size, hidden_size=256, mult = mult)
Grassdecoder = Grassdecoder

Grassdecoder.eval()

checkpoint = torch.load("64bueno.pth", map_location=torch.device('cpu'))
Grassdecoder.load_state_dict(checkpoint['decoder_state_dict'])

gr.Interface( predict, 
    inputs=None,
    outputs=gr.Plot(),
).launch()