File size: 5,160 Bytes
d48b9e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import torch
import audiosr.hifigan as hifigan
def get_vocoder_config():
return {
"resblock": "1",
"num_gpus": 6,
"batch_size": 16,
"learning_rate": 0.0002,
"adam_b1": 0.8,
"adam_b2": 0.99,
"lr_decay": 0.999,
"seed": 1234,
"upsample_rates": [5, 4, 2, 2, 2],
"upsample_kernel_sizes": [16, 16, 8, 4, 4],
"upsample_initial_channel": 1024,
"resblock_kernel_sizes": [3, 7, 11],
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
"segment_size": 8192,
"num_mels": 64,
"num_freq": 1025,
"n_fft": 1024,
"hop_size": 160,
"win_size": 1024,
"sampling_rate": 16000,
"fmin": 0,
"fmax": 8000,
"fmax_for_loss": None,
"num_workers": 4,
"dist_config": {
"dist_backend": "nccl",
"dist_url": "tcp://localhost:54321",
"world_size": 1,
},
}
def get_vocoder_config_48k():
return {
"resblock": "1",
"num_gpus": 8,
"batch_size": 128,
"learning_rate": 0.0001,
"adam_b1": 0.8,
"adam_b2": 0.99,
"lr_decay": 0.999,
"seed": 1234,
"upsample_rates": [6, 5, 4, 2, 2],
"upsample_kernel_sizes": [12, 10, 8, 4, 4],
"upsample_initial_channel": 1536,
"resblock_kernel_sizes": [3, 7, 11, 15],
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5], [1, 3, 5]],
"segment_size": 15360,
"num_mels": 256,
"n_fft": 2048,
"hop_size": 480,
"win_size": 2048,
"sampling_rate": 48000,
"fmin": 20,
"fmax": 24000,
"fmax_for_loss": None,
"num_workers": 8,
"dist_config": {
"dist_backend": "nccl",
"dist_url": "tcp://localhost:18273",
"world_size": 1,
},
}
def get_available_checkpoint_keys(model, ckpt):
state_dict = torch.load(ckpt)["state_dict"]
current_state_dict = model.state_dict()
new_state_dict = {}
for k in state_dict.keys():
if (
k in current_state_dict.keys()
and current_state_dict[k].size() == state_dict[k].size()
):
new_state_dict[k] = state_dict[k]
else:
print("==> WARNING: Skipping %s" % k)
print(
"%s out of %s keys are matched"
% (len(new_state_dict.keys()), len(state_dict.keys()))
)
return new_state_dict
def get_param_num(model):
num_param = sum(param.numel() for param in model.parameters())
return num_param
def torch_version_orig_mod_remove(state_dict):
new_state_dict = {}
new_state_dict["generator"] = {}
for key in state_dict["generator"].keys():
if "_orig_mod." in key:
new_state_dict["generator"][key.replace("_orig_mod.", "")] = state_dict[
"generator"
][key]
else:
new_state_dict["generator"][key] = state_dict["generator"][key]
return new_state_dict
def get_vocoder(config, device, mel_bins):
name = "HiFi-GAN"
speaker = ""
if name == "MelGAN":
if speaker == "LJSpeech":
vocoder = torch.hub.load(
"descriptinc/melgan-neurips", "load_melgan", "linda_johnson"
)
elif speaker == "universal":
vocoder = torch.hub.load(
"descriptinc/melgan-neurips", "load_melgan", "multi_speaker"
)
vocoder.mel2wav.eval()
vocoder.mel2wav.to(device)
elif name == "HiFi-GAN":
if mel_bins == 64:
config = get_vocoder_config()
config = hifigan.AttrDict(config)
vocoder = hifigan.Generator_old(config)
# print("Load hifigan/g_01080000")
# ckpt = torch.load(os.path.join(ROOT, "hifigan/g_01080000"))
# ckpt = torch.load(os.path.join(ROOT, "hifigan/g_00660000"))
# ckpt = torch_version_orig_mod_remove(ckpt)
# vocoder.load_state_dict(ckpt["generator"])
vocoder.eval()
vocoder.remove_weight_norm()
vocoder.to(device)
else:
config = get_vocoder_config_48k()
config = hifigan.AttrDict(config)
vocoder = hifigan.Generator_old(config)
# print("Load hifigan/g_01080000")
# ckpt = torch.load(os.path.join(ROOT, "hifigan/g_01080000"))
# ckpt = torch.load(os.path.join(ROOT, "hifigan/g_00660000"))
# ckpt = torch_version_orig_mod_remove(ckpt)
# vocoder.load_state_dict(ckpt["generator"])
vocoder.eval()
vocoder.remove_weight_norm()
vocoder.to(device)
return vocoder
def vocoder_infer(mels, vocoder, lengths=None):
with torch.no_grad():
wavs = vocoder(mels).squeeze(1)
wavs = (wavs.cpu().numpy() * 32768).astype("int16")
if lengths is not None:
wavs = wavs[:, :lengths]
# wavs = [wav for wav in wavs]
# for i in range(len(mels)):
# if lengths is not None:
# wavs[i] = wavs[i][: lengths[i]]
return wavs
|