File size: 1,604 Bytes
1239b39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
#!/usr/bin/env bash
# generate prediction results for submission on sintel and kitti online servers
# GMFlow without refinement
# submission to sintel
CUDA_VISIBLE_DEVICES=0 python main.py \
--submission \
--output_path submission/sintel-gmflow-norefine \
--val_dataset sintel \
--resume pretrained/gmflow_sintel-0c07dcb3.pth
# submission to kitti
CUDA_VISIBLE_DEVICES=0 python main.py \
--submission \
--output_path submission/kitti-gmflow-norefine \
--val_dataset kitti \
--resume pretrained/gmflow_kitti-285701a8.pth
# you can also visualize the predictions before submission
# CUDA_VISIBLE_DEVICES=0 python main.py \
# --submission \
# --output_path submission/sintel-gmflow-norefine-vis \
# --save_vis_flow \
# --no_save_flo \
# --val_dataset sintel \
# --resume pretrained/gmflow_sintel.pth
# GMFlow with refinement
# submission to sintel
CUDA_VISIBLE_DEVICES=0 python main.py \
--submission \
--output_path submission/sintel-gmflow-withrefine \
--val_dataset sintel \
--resume pretrained/gmflow_with_refine_sintel-3ed1cf48.pth \
--padding_factor 32 \
--upsample_factor 4 \
--num_scales 2 \
--attn_splits_list 2 8 \
--corr_radius_list -1 4 \
--prop_radius_list -1 1
# submission to kitti
CUDA_VISIBLE_DEVICES=0 python main.py \
--submission \
--output_path submission/kitti-gmflow-withrefine \
--val_dataset kitti \
--resume pretrained/gmflow_with_refine_kitti-8d3b9786.pth \
--padding_factor 32 \
--upsample_factor 4 \
--num_scales 2 \
--attn_splits_list 2 8 \
--corr_radius_list -1 4 \
--prop_radius_list -1 1
|