File size: 27,371 Bytes
d941617
 
 
 
 
 
 
 
 
 
 
44f71b0
d941617
 
44f71b0
d941617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44f71b0
 
 
 
 
 
 
 
d941617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
955d43b
 
d941617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
import streamlit as st
import pandas as pd
import numpy as np
import json

import time
import requests

import os
import glob
import re
#import smart_open
import plotly.express as px 
import random
#import difflib
import pdb

from sentence_transformers import SentenceTransformer, models, util

enable_summary_button = True
dump_pos_data_for_reporting = True

bucket_name = "paper_n1"

prefix_lst = [
  "pgj_d_4096", 
  "pgj_d_2048", 
  "pgj_d_1024_v2", 
  "pgj_d_1024_layer_14", 
  "pgj_d_1024_layer_7", 
  "pgj_d_1024_layer_2", 
  "pgj_d_1024_layer_1" ]

  # "my_gptj_6b_tpu_size_8", 

model_names = {
  prefix_lst[0]: 'PatentGPT-J-6B',
  prefix_lst[1]: 'PatentGPT-J-1.6B',

  # prefix_lst[2]: 'PatentGPT-J-279M',
  # prefix_lst[3]: 'PatentGPT-J-191M',
  # prefix_lst[4]: 'PatentGPT-J-128M',
  # prefix_lst[5]: 'PatentGPT-J-115M',}

  prefix_lst[2]: 'PatentGPT-J-456M',
  prefix_lst[3]: 'PatentGPT-J-279M',
  prefix_lst[4]: 'PatentGPT-J-191M',
  prefix_lst[5]: 'PatentGPT-J-128M',
  prefix_lst[6]: 'PatentGPT-J-115M',}

  # prefix_lst[7]:'GPT-J-6B'

# experiment 3
# folder = os.path.join('experiments', 'non_patent')
# id_to_scroll = 1  # which of the above to scroll through
# first_claim_only = True 

#experiment 2
# folder = os.path.join('experiments', 'ipg20220104_500')
# #folder = "device_serve_results"
# id_to_scroll = 1  # which of the above to scroll through
# first_claim_only = False

# prefix_lst = ["my_gptj_6b_tpu_size_8", "pgj_d_4096", "pgj_d_2048", "pgj_d_1024_layer_14", "pgj_d_1024_layer_7", "pgj_d_1024_layer_2", "pgj_d_1024_layer_1"]
# #, "pgj_large", "pgj_medium", "pgj_small", ]
# # "pgj_d_1024_layer_14"

# experiment 1
folder = os.path.join('experiments', 'ipg22_500')
# (previous) folder = "eval_ipg22_500"
id_to_scroll = 1  # which of the above to scroll through
first_claim_only = True 

ignore_outscope = True  # ignore pick > 10

# def show_diff(a, b):
#   #print('{} => {}'.format(a,b))  
#   for i, s in enumerate(difflib.ndiff(a, b)):
#       if s[0]==' ': continue
#       elif s[0]=='-':
#           print(u'Delete "{}" from position {}'.format(s[-1],i))
#       elif s[0]=='+':
#           print(u'Add "{}" to position {}'.format(s[-1],i))    

def handle_char_return(text):
  if text == '(none)':  # unicorn text
    text == ''

  return text
  
  #return ch.replace('\n', '\\n')

  #if ch == '\n':
  #  ch = "'\\n'"
  #return ch

def get_remaining(lst, pos):
  s = ''
  for i in range(pos, len(lst)):
    text = lst[i]['actual_next_token_text']
    if text.startswith(' ') == False:
      s += text
    else:
      break  

  return s

def calc_details(base_fn):
  full_fn = os.path.join(folder, base_fn)
  #gs_fn = "gs://%s/%s/%s" % (bucket_name, folder, base_fn)
  #with smart_open.open(gs_fn) as f:

  if os.path.exists(full_fn) == False:
    return None, -1, -1, None, None, None, None, None

  with open(full_fn) as f:
    result = json.loads(f.read())
    print("Loaded: %s" % full_fn)

  lst = result['output']
  recv = result['recv']
  sum_pick = 0
  sum_prob = 0 
  sum_outscope_count = 0
  sum_outscope_len = 0
  sum_hit_1 = 0
  sum_top_10_len = 0
  full_text = ''

  token_count = 0
  #found_end = False
  
  #pdb.set_trace()

  for i, tk in enumerate(lst[:-1]):
    # if found_end:
    #   break 

    token_text = handle_char_return(tk['actual_next_token_text'])

    # Due to tokenizer difference, the following needs more work in the future.
    # if base_fn.find('gptj') >= 0: 
    #   # using the original gpt-j-6b model
    #   # need to skip special tokens
    #   if i <= 7:
    #     continue  # skip |start of claim|>

    #   remaining_text = get_remaining(lst, i)
    #   if remaining_text.find('<|end_of_claim|>') >= 0:
    #     pos1 = remaining_text.find('<|end_of_claim|>')
    #     token_text = remaining_text[:pos1]
    #     found_end = True
    #     #pdb.set_trace() 
    #     #break

    # The following was for GPT-J-6B. Not needed for PatentGPT-J. 
    #if token_text.find('<|end_of_claim|>') == 0: 
    #  #pdb.set_trace()
    #  break
    
    next_top_seq = int(tk['actual_next_token_top_seq'])
    next_top_prob = float(tk['actual_next_token_top_prob']) 

    full_text += token_text
    if next_top_seq == 0:
      sum_hit_1 += 1   # press "tab" for the top pick

    if ignore_outscope and next_top_seq>=10: 
      sum_outscope_count += 1
      sum_outscope_len += len(token_text)  # use length as keystrokes 
    else:
      sum_pick += min(next_top_seq+1, len(token_text))
      #sum_pick += (next_top_seq+1) # press "down" & "tab"
      sum_prob += next_top_prob
      sum_top_10_len += len(token_text)

    token_count += 1

  if ignore_outscope: 
    if token_count == 0: # unlikely
      avg_pick = 0
      avg_prob = 0
    else:
      avg_pick = float(sum_pick) / token_count
      avg_prob = float(sum_prob) / token_count
  else:
    avg_pick = float(sum_pick) / token_count
    avg_prob = float(sum_prob) / token_count  

  # if len(lst) < 2048:  # for debugging
  #   s = '<|start_of_claim|>' + full_text
  #   if len(s) != len(recv['context']):
  #     print('length mismatch --> full_text: %s, recv: %s' % (len(s), len(recv['context'])))
  #     show_diff(s, recv['context'])
  #     pdb.set_trace() 

  return result, avg_pick, avg_prob, token_count, sum_pick, sum_prob, sum_outscope_count, sum_outscope_len, sum_hit_1, sum_top_10_len, full_text

def show_avg(base_fn, model_name, patent_claim_num, show_pick=False): 

  result, avg_pick, avg_prob, token_count, sum_pick, sum_prob, sum_outscope_count, sum_outscope_len, sum_hit_1, sum_top_10_len, full_text = calc_details(base_fn)  

  if token_count == 0:
    print('debug 2')
    pdb.set_trace()

  if result is None:
    return None

  lst = result['output']
  result = ''
  sum_all = {}
  for i, tk in enumerate(lst):
    token_text = handle_char_return(tk['actual_next_token_text'])

    if token_text == '<|end_of_claim|>': 
      break

    if token_text == '(none)': # for unicorn text
      break      

    # Skip GPT-J, due to different tokenization  
    # if base_fn.find('gptj') >= 0: 
    #   # using the original gpt-j-6b model
    #   # need to skip special tokens
    #   if i <= 7:
    #     continue  # skip |start of claim|>
    #   if token_text == '.<': # assuming .<|end of claim|>
    #     break

    pick = int(tk['actual_next_token_top_seq'])
    prob = float(tk['actual_next_token_top_prob'])

    colors = [
      ['00ff00', '000000', '1'], 
      ['008800', 'ffffff', '2-10'], 
      ['ff0000', 'ffffff', 'out of top 10'], 
    ]
    #colors = [
    #  ['00ff00', '000000', '1'], 
    #  ['008800', 'ffffff', '2-10'], 
    #  ['aa0000', 'ffffff', '11-100'], 
    #  ['ff0000', 'ffffff', '101~']
    #]

    for j, item in enumerate(colors):
      sum_all[item[2]] = 0

    # skip follow-up subword 
    # if token_text.startswith(' ') == False:
    #   bg_color = ''
    #   fg_color = '' 
    # else:     

    if pick == 0:
      bg_color = colors[0][0]
      fg_color = colors[0][1]
      tag = colors[0][2]
      sum_all[tag] += 1
    elif pick >= 1 and pick < 10:
      bg_color = colors[1][0]
      fg_color = colors[1][1]
      tag = colors[1][2]
      sum_all[tag] += 1
    else: # pick >= 10
      #elif pick >= 10 and pick < 100:
      bg_color = colors[2][0]
      fg_color = colors[2][1]
      tag = colors[2][2]
      sum_all[tag] += 1
    #else:   #pick >= 100:
    #  bg_color = colors[3][0]
    #  fg_color = colors[3][1]
    #  tag = colors[3][2]
    #  sum_all[tag] += 1

    if show_pick:
      pick = '[%s]' % pick
    else:
      pick = ''

    result += "<span style=background-color:#%s;color:#%s;border-radius:5px;>%s%s</span>  " % (bg_color, fg_color, token_text, pick) #&nbsp;

  color_msg = ''
  for i, v in enumerate(colors):
    color_msg += "<span style=background-color:#%s;color:#%s;border-radius:5px;>&nbsp;%s&nbsp;</span> " % (v[0], v[1], v[2]) 

  #result, avg_pick, avg_prob, token_count, sum_pick, sum_prob, sum_outscope, sum_hit_1, sum_top_10_len, full_text = calc_details(base_fn)  

  # sum_pick as top 1~10
  keys_with_auto = (sum_pick+sum_outscope_len)
  keys_without_auto = len(full_text)
  saved_ratio = float(keys_without_auto-keys_with_auto)/keys_without_auto * 100
  s = 'model: %s\n' \
    'Autocomplete Effectiveness: %.1f%% (keystrokes saved)\n' \
    'Total keystrokes: %s (with autocomplete), %s (without autocomplete)\n' \
    'Keystroke distribution: top 1~10: %s (top 1: %s), out of top 10: %s' % (model_name, saved_ratio, keys_with_auto, keys_without_auto,  sum_pick, sum_hit_1, sum_outscope_len)
  st.text(s)

  # s = 'file: %s, sum_pick: %s, sum_hit_1: %s, token_count: %s, sum_outscope: %s, avg_pick: %.2f, avg_prob: %.2f, sum_prob: %.2f, hit_1 ratio: %.2f  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;' % (base_fn, sum_pick, sum_hit_1, token_count, sum_outscope, avg_pick, avg_prob, sum_prob, float(sum_hit_1)/token_count)
  #s += color_msg

  s = color_msg
  st.markdown(s, unsafe_allow_html=True)
  #st.text('file: %s, avg_pick: %5.2f, avg_prob: %.2f, hit count: %s/%s  ' % (base_fn, avg_pick, avg_prob, hit_0_count, len(lst)))
  # show histogram

  st.markdown(result, unsafe_allow_html=True)
  #st.text_area('context with top seq & prob:', result, height=400)  

  sum_lst = [sum_all['1'], sum_all['2-10'], sum_all['out of top 10']]
  #sum_lst = [['1', sum_all['1']], ['2-10', sum_all['2-10']]]
  #sum_lst = [sum_all['1'], sum_all['2-10'], sum_all['11-100'], sum_all['101~']]

  return sum_lst

def show_overall_summary(prefix_lst, select_lst):  
  # accumulate all

  # debug
  # for i, num in enumerate(select_lst): 
  #   pre_full_text = ''
  #   for prefix in prefix_lst:
  #     base_fn = '%s_%s_forward.json' % (prefix, num)
  #     result, avg_pick, avg_prob, token_count, sum_pick, sum_prob, sum_outscope, sum_hit_1, sum_top_10_len, full_text = calc_details(base_fn)  

  #     if pre_full_text == '':
  #       pre_full_text = full_text
  #     else:
  #       if pre_full_text != full_text:
  #         print('debug')
  #         pdb.set_trace() 

  # # 
  # pdb.set_trace()

  for prefix in prefix_lst:
    acc_token_count = 0
    acc_sum_pick = 0
    acc_sum_prob = 0 
    acc_sum_outscope_count = 0 
    acc_sum_outscope_len = 0 
    acc_sum_hit_1 = 0
    acc_sum_top_10_len = 0 
    acc_full_text_len = 0

    pre_full_text = ''
    for i, num in enumerate(select_lst):    
      base_fn = '%s_%s_forward.json' % (prefix, num)
      result, avg_pick, avg_prob, token_count, sum_pick, sum_prob, sum_outscope_count, sum_outscope_len, sum_hit_1, sum_top_10_len, full_text = calc_details(base_fn)  

      acc_token_count += token_count
      acc_sum_pick += sum_pick
      acc_sum_prob += sum_prob
      acc_sum_outscope_count += sum_outscope_count
      acc_sum_outscope_len += sum_outscope_len
      acc_sum_hit_1 += sum_hit_1
      acc_sum_top_10_len += sum_top_10_len
      acc_full_text_len += len(full_text)

    if acc_token_count > 0:
      # acc_sum_pick --> top 1~10
      keys_with_auto = acc_sum_pick + acc_sum_outscope_len
      keys_without_auto = acc_full_text_len
      saved_ratio = float(keys_without_auto-keys_with_auto)/keys_without_auto * 100

      st.text('[ %s ]\n' \
        'Autocomplete Effectiveness: %.1f%% (ratio of saving keystroke)\n' \
        '(sum) keys_with_auto: %s, top_10_keys: %s, out_of_scope: %s, sum_hit_1: %s\n' \
        'keys_without_auto: %s, top_10_len: %s, prob: %.2f' % (
        model_names[prefix], saved_ratio, 
        '{:,}'.format(keys_with_auto),
        '{:,}'.format(acc_sum_pick), 
        '{:,}'.format(acc_sum_outscope_len),
        '{:,}'.format(acc_sum_hit_1), 
        '{:,}'.format(keys_without_auto),
        '{:,}'.format(acc_sum_top_10_len), 
        acc_sum_prob, 
        ))

      st.text('%s & %.1f\\%% & %s & %s & %s & %s & %s \\\\' % (model_names[prefix], saved_ratio, '{:,}'.format(keys_with_auto), '{:,}'.format(acc_sum_pick), '{:,}'.format(acc_sum_outscope_len), '{:,}'.format(acc_sum_hit_1), '{:,}'.format(keys_without_auto)))

      # st.text('* acc_token_count =%s --> (avg) hits: %.2f, keys: %.2f, prob: %.2f, outscope: %.2f' % (
      #     acc_token_count, 
      #     float(acc_sum_hit_1)/acc_token_count,
      #     float(acc_sum_pick)/acc_token_count, 
      #     float(acc_sum_prob)/acc_token_count, 
      #     float(acc_sum_outscope_count)/acc_token_count))

def calc_height(s):
  return int(len(s) / 10 * 3) + 30

def remove_end_of_claim_text(gen_text):  
  tag = '<|end_of_claim|>'
  pos = gen_text.find(tag)
  if pos > 0:
    gen_text = gen_text[:pos+len(tag)]
    return gen_text

  tag = '<|endoftext|>'
  pos = gen_text.find(tag)
  if pos > 0:
    gen_text = gen_text[:pos+len(tag)]

  return gen_text

def dump_pos_data(prefix_lst, select_lst):
  #statistics = [[0]*3]*2048
  statistics = []
  for i in range(2048):
    statistics.append([0,0,0])

  #results.append(['model', 'pos', 'key'])
  #results.append(['model', 'patent_claim', 'pos', 'top-1', 'top-2~10', 'out of top 10'])
  max_len = -1
  for prefix in prefix_lst:
    model_name = model_names[prefix].replace('PatentGPT-J-', '')
    if model_name != '456M':
      continue

    #total = {}
    for i, num in enumerate(select_lst):    
      base_fn = '%s_%s_forward.json' % (prefix, num)
      full_fn = os.path.join(folder, base_fn)
      if os.path.exists(full_fn) == False:
        continue 

      with open(full_fn) as f:
        result = json.loads(f.read())
        print("Loaded: %s" % full_fn)

      lst = result['output']
      for j, tk in enumerate(lst[:-1]):
        max_len = max(j, max_len)        
        next_top_seq = int(tk['actual_next_token_top_seq'])
        #next_top_prob = float(tk['actual_next_token_top_prob']) 

        top_1 = top_2_to_10 = out_of_scope = 0
        if next_top_seq == 0:
          top_1 = 1
          tag = 'top-1'
          statistics[j][0] += 1
        elif next_top_seq > 0 and next_top_seq < 10:
          top_2_to_10 = 1
          tag = 'top-2~10'
          statistics[j][1] += 1
        else:
          out_of_scope = 1
          tag = 'out-of-scope'
          statistics[j][2] += 1

        #total[tag] = total.get(tag, 0) + 1
        #results.append([model_name, str(i+1), tag])
        #results.append([model_name, str(i+1), tag])
        #results.append([model_name, num, str(i+1), tag])
        #results.append([model_name, num, i+1, top_1, top_2_to_10, out_of_scope])
        #pdb.set_trace()
      #pdb.set_trace() 

  dump_file = 'dump4.txt'
  #pdb.set_trace() 
  with open(dump_file, 'w') as f:
    for i in range(max_len+1):
      f.write('%s, top-1, %s\n' % (i+1, statistics[i][0]))
      f.write('%s, top-2~10, %s\n' % (i+1, statistics[i][1]))
      f.write('%s, out_of_scope, %s\n' % (i+1, statistics[i][2]))
      # f.write('%s\n' % ', '.join([str(i+1)] + [ str(v) for v in statistics[i] ] ))
  print('saved: %s' % dump_file)


  # dump_file = 'dump2.txt'
  # with open(dump_file, 'w') as f:
  #   for line in results:
  #     f.write('%s\n' % ', '.join(line))
  # print('saved: %s' % dump_file)


def calc_sentence_similarity(sent_model, sent1, sent2):
  rewards = []
  embedding1 = sent_model.encode(sent1, convert_to_tensor=True)
  embedding2 = sent_model.encode(sent2, convert_to_tensor=True)
  similarity = util.cos_sim(embedding1, embedding2)[0][0]

  #pdb.set_trace()
  
  return similarity

sent_model = 'patent/st-aipd-nlp-g' 
print('loading SentenceTransformer: %s' % sent_model)
sent_aipd = SentenceTransformer(sent_model)

def load_data(demo):
  fn = 'ppo_open_llama_3b_v2.run.12.delta.txt'
  #fn = 'ppo_output/ppo_open_llama_3b_v2.run.12.delta.txt'
  with open(fn, 'r') as f:
    rows = json.load(f)

  if demo == 'demo1':
    new_rows = [ row for row in rows if row['instruction'].find('child') > 0 ]
  elif demo == 'demo2':
    new_rows = [ row for row in rows if row['instruction'].find('parent') > 0 ]
  else:
    new_rows = []    

  return new_rows

container_style = """
  <style>
      .container1 {
          border: 2px solid #3498db;
          border-radius: 8px;
          padding: 10px;
          margin-bottom: 20px;
      }
      .container2 {
          /* Add styles for Container 2 if needed */
      }
  </style>
"""

def main():
  st.set_page_config(  # Alternate names: setup_page, page, layout
    layout="wide",  # Can be "centered" or "wide". In the future also "dashboard", etc.
    initial_sidebar_state="auto",  # Can be "auto", "expanded", "collapsed"
    page_title="Demo 1",  # String or None. Strings get appended with "• Streamlit".
    page_icon=None,  # String, anything supported by st.image, or None.
  )

  opt_1 = 'parent --> child'
  opt_2 = 'child --> parent'
  options = [opt_1, opt_2]
  rows = None
  pos = None
  patent_num = ''
  claim_num1 = ''
  claim_num2 = ''
  instruction= ''
  input_text = ''
  output_text = ''
  response = ''
  query = ''
  score_lst_1 = 0
  score_lst_2 = 0
  rewards = ''  
  with st.container():
    col1, col2, col3 = st.columns([3, 5, 2])
    with col1:
      selected_option = st.selectbox('Select a demo:', options)
    if selected_option == opt_1:
      rows = load_data('demo1')
      msg = 'novelty = sim1-sim2'
      #msg = 'delta of similarities<br>(sim1-sim2)'
      c1_tag = 'pc'
      c2_tag = 'cc1'
      c3_tag = 'cc2'
    elif selected_option == opt_2:  
      rows = load_data('demo2')
      msg = 'similarity of<br>(pc1) and (pc2)'
      c1_tag = 'cc'
      c2_tag = 'pc1'
      c3_tag = 'pc2'
    else:
      st.text('Unknown option')
      return
    #rows = rows[:5000] # for debugging

    with col2:
      pos = st.slider("", 1, len(rows))
      #pos = st.slider("Degree of novelty (Generated v. Actual)", 1, len(rows))
      for i in range(pos):
        #prompt = '%s' % rows[i]
        #pdb.set_trace()

        patent_num = rows[i]['patent_num']
        claim_num1 = rows[i]['claim_num1']
        claim_num2 = rows[i]['claim_num2']
        instruction= rows[i]['instruction']
        input_text = rows[i]['input']
        output_text = rows[i]['output']
        response = rows[i]['response']
        query = rows[i]['query']
        score_lst_1 = rows[i]['score_lst_1']
        score_lst_2 = rows[i]['score_lst_2']
        delta = rows[i]['delta']
        rewards = rows[i]['rewards']
    with col3:
      #v = round(float(score_lst_1)-float(score_lst_2), 4)
      #v = delta #round(delta,10)
      st.markdown("<center><h7>%s<br>%s</h7></center>" % (msg, delta), unsafe_allow_html=True)
      #  style='text-align: center; color: black;'
        

  # selectbox_placeholder = st.empty()
  # selected_option = selectbox_placeholder.selectbox('Select a demo:', options)
  # container1 = st.container()


  # with st.container():
  #     col1, col2 = st.columns(2)
  #     with col1:
  #         st.write('Caption for first chart')
  #     with col2:
  #         st.line_chart((0,1), height=100)
  # with st.container():
  #     col1, col2 = st.columns(2)
  #     with col1:
  #         st.write('Caption for second chart')
  #     with col2:
  #         st.line_chart((1,0), height=100)

  #st.write('patent_num:', patent_num)
  # st.write('claim_num1:', claim_num1)
  # st.write('claim_num2:', claim_num2)
  st.write('(instruction) ', instruction)

  with st.container():
    with st.container(border=True):
      st.write('(%s) [ %s ]\n%s' % (c1_tag, patent_num, input_text))
      #st.write('input:' % patent_num)
      #st.write('input:\n', input_text)

    #container1.markdown("<div class='container1'>", unsafe_allow_html=True)
    col1, col2 = st.columns(2)
    with col1:
      with st.container(border=True):
        st.write('(%s) (actual)' % c2_tag)
        st.write(output_text)
    with col2:
      with st.container(border=True):
        st.write('(%s) (generated)' % c3_tag)
        st.write(response)

    col1, col2 = st.columns(2)
    with col1:
      with st.container(border=True):
        st.write('(sim1) similarity between %s and %s+%s: %s' % (c1_tag, c1_tag, c2_tag, str(score_lst_1)))
    with col2:
      with st.container(border=True):
        st.write('(sim2) similarity between %s and %s+%s: %s' % (c1_tag, c1_tag, c3_tag, str(score_lst_2)))

    #container1.markdown("</div>", unsafe_allow_html=True)

    # st.write("In Container 1")
    # table_name = st.radio("Please Select Table", list_of_tables)

  # st.write('output:')
  # st.write(output_text)
  # st.write('response:')
  # st.write(response)
  #st.write('query:', query)
  # st.write('score_lst_1:', score_lst_1)
  # st.write('score_lst_2:', score_lst_2)
  # st.write('rewards:', rewards)
  # st.text('hello')

  # dict_keys(['patent_num', 'claim_num1', 'claim_num2', 'instruction', 'input', 'output', 'query', 'response', 'score_lst_1', 'score_lst_2', 'rewards'])

  # st.subheader("Inspecting PatentGPT-J Model Evaluation")



  # num_set = set()
  # fn_lst = glob.glob(os.path.join(folder, '*'))
  # for i, fn in enumerate(fn_lst):
  #   for prefix in prefix_lst:    
  #     v = re.search('(.*?)%s\_(\d+\_\d+)\_(.*?)' % prefix, fn)
  #     if v is None:
  #       v = re.search('(.*?)%s\_(\w+\_\d+)\_(.*?)' % prefix, fn)

  #       #pdb.set_trace()
  #       if v is None:
  #         #pdb.set_trace()
  #         continue

  #     v = v.group(2)
  #     if first_claim_only:
  #       if v.endswith('_1'):
  #         num_set.add(v)
  #     else: 
  #       num_set.add(v)

  # num_lst = list(num_set)
  # num_lst.sort()

  # select_lst = []
  # for i, num in enumerate(num_lst):
  #   all_existed = True
  #   for prefix in prefix_lst:
  #     fn = os.path.join(folder, '%s_%s_forward.json' % (prefix, num))
  #     if os.path.exists(fn) == False:
  #       all_existed = False
  #       break
  #   if all_existed: 
  #     select_lst.append(num)
  # select_lst.sort()

  # if len(select_lst) == 0:
  #   st.text('select_lst is empty')
  #   return 

  # if dump_pos_data_for_reporting:
  #   dump_pos_data(prefix_lst, select_lst)
  #   st.text('Dump data: done')
  #   return

  # # debug
  # #base_fn = 'my_gptj_6b_tpu_size_8_11212952_1_forward.json'
  # #base_fn = 'pgj_small_text-1_1_forward.json'
  # #_ = show_avg(base_fn)

  # if enable_summary_button:
  #   if st.button('Show Summary'):
  #     st.text('len(select_lst) = %s' % len(select_lst))
  #     show_overall_summary(prefix_lst, select_lst)

  # # if 'num' not in st.session_state:
  # #   num = random.choice(select_lst)
  # #   st.session_state['num'] = num

  # # set_state('num', num)
  # # def set_state(k, v):
  # #   if k not in st.session_state:
  # #     st.session_state[ k ] = v

  # show_patent_lst = [ s.replace('_', ' (claim ') + ')' for s in select_lst]
  # selected = st.selectbox("Choose a patent claim", show_patent_lst)
  # num = selected.replace(')', '').replace(' (claim ', '_')
  # if st.button('Random pick'):
  #   num = random.choice(select_lst)

  # st.text('Selected: %s' % num)
  # st.session_state['num'] = num

  # avgs = []
  # for prefix in prefix_lst:
  #   base_fn = '%s_%s_forward.json' % (prefix, num)
  #   one_avg = show_avg(base_fn, model_names[prefix], num)
  #   if one_avg is not None:
  #     avgs.append(one_avg) 

  # # debug
  # #pdb.set_trace()
  # #return 
  # #

  # data_lst = []
  # for i in range(len(avgs[0])):
  #   row = []
  #   for j, prefix in enumerate(prefix_lst):
  #     row.append(avgs[j][i])
  #   data_lst.append(row)

  # df = pd.DataFrame(data_lst, index=['1','2-10','out of top 10'])
  # #df = pd.DataFrame(data_lst, index=['1','2-10','11-100','101~'])

  # #  ], index=['(a) 1','(b) 2-10','(c) 11-100','(d) 101~'])
  # #  [avgs[0][0], avgs[1][0], avgs[2][0]],
  # #  [avgs[0][1], avgs[1][1], avgs[2][1]],
  # #  [avgs[0][2], avgs[1][2], avgs[2][2]],
  # #  [avgs[0][3], avgs[1][3], avgs[2][3]],
  
  # #df = pd.DataFrame([[1,2],[3,1]], columns=['a', 'b'])
  # #df = pd.DataFrame([
  # #  [sum1[0], sum1[1], sum1[2], sum1[3]],
  # #  [sum2[0], sum2[1], sum2[2], sum2[3]],
  # #  [sum3[0], sum3[1], sum3[2], sum3[3]],
  # #  ]) #, index=['(a) 1','(b) 2-10','(c) 11-100','(d) 101~'])
  # #df = pd.DataFrame.from_dict(sum_all, orient='index')
  # #st.line_chart(df)

  # #data_canada = px.data.gapminder().query("country == 'Canada'")
  # #fig = px.bar(data_canada, x='year', y='pop')

  # if st.button('Show chart'):
  #   fig = px.bar(df, barmode='group')
  #   st.plotly_chart(fig, use_container_width=True)
  #   #fig.show()
  #   #st.area_chart(df)  
  #   #st.bar_chart(df)    

  # #
  # base_fn = '%s_%s_forward.json' % (prefix_lst[ id_to_scroll ], st.session_state['num'])
  # result, avg_pick, avg_prob, _, _, _, _, _, _, _, _ = calc_details(base_fn)
  # recv = result['recv']
  # lst = result['output']
  # input_tokens = result['input']

  # # (Pdb) print(token_pos_lst[0].keys())
  # #dict_keys(['idx', 'gen_text', 'actual_next_token_text', 'actual_next_token_top_seq', 'actual_next_token_top_prob', 'top_n_lst'])

  # height = calc_height(recv['context'])
  # st.text_area('context:', recv['context'], height=height)

  # pos = st.slider("Token position", 0, len(lst))
  # prompt = ''
  # for i in range(pos+1):
  #   prompt += input_tokens[i]['text']
  # height = calc_height(prompt)
  # st.text_area('prompt:', prompt, height=height)

  # ch = handle_char_return(lst[pos]['actual_next_token_text'])
  # st.text('actual_next_token_text: %s --> pick seq: %s (prob: %.2f)' % (ch, int(lst[pos]['actual_next_token_top_seq'])+1, 
  #   float(lst[pos]['actual_next_token_top_prob'])))

  # st.text('top 10 tokens:')
  # for i, v in enumerate(lst[pos]['top_n_lst']):
  #   ch = handle_char_return(v['top_n_text'])
  #   st.text('[ %s ][ %s ]( %.2f )' % (i+1, ch, float(v['top_n_prob'])))

  # gen_text = lst[pos]['gen_text']
  # gen_text = remove_end_of_claim_text(gen_text)

  # st.text('gen_text: %s' % gen_text)
  # #st.text("done. ok.")
  # #st.text('result:\n%s' % result)

if __name__ == "__main__":
  main()

#def load_data_pre(demo):
#   fn = 'ppo_output/ppo_open_llama_3b_v2.run.12.keep.txt'
#   with open(fn, 'r') as f:
#     rows = json.load(f)

#   new_rows = []
#   for i, row in enumerate(rows):
#     item1 = {}
#     item2 = {}
#     if demo == 'demo1':
#       item1[ 'delta' ] = abs(row['score_lst_1'][0] - row['score_lst_2'][0])
#       item2[ 'delta' ] = abs(row['score_lst_1'][1] - row['score_lst_2'][1])
#     elif demo == 'demo2':
#       #pdb.set_trace()
#       item1[ 'delta' ] = calc_sentence_similarity(sent_aipd, row['output'][0], row['response'][0])
#       item2[ 'delta' ] = calc_sentence_similarity(sent_aipd, row['output'][1], row['response'][1])

#       print('[ %s ] detla = %s' % (i, item1[ 'delta' ]))

#     for k in row.keys():
#       item1[ k ] = row[ k ][0]
#       item2[ k ] = row[ k ][1]

#     if demo == 'demo1':
#       if item1['instruction'].find('child') > 0:
#         new_rows.append(item1)
#       if item2['instruction'].find('child') > 0:
#         new_rows.append(item2)
#     elif demo == 'demo2':
#       if item1['instruction'].find('parent') > 0:
#         new_rows.append(item1)
#       if item2['instruction'].find('parent') > 0:
#         new_rows.append(item2)

#   # Assuming new_rows is your list of dictionaries
#   sorted_rows = sorted(new_rows, key=lambda x: x['delta'])

#   # kv = {}
#   # for i, row in enumerate(new_rows):
#   #   if diff > 0.0001:
#   #     kv[i] = round(diff, 4)

#   # sorted_rows = []
#   # sorted_kv = sorted(kv.items(), key=lambda x:x[1])
#   # for k, v in sorted_kv:
#   #   sorted_rows.append(new_rows[k])

#   #pdb.set_trace() 

#   return sorted_rows