Spaces:
Sleeping
Sleeping
File size: 9,268 Bytes
3278fb4 7deef83 3278fb4 7deef83 054d418 3278fb4 054d418 3278fb4 7deef83 28d3dab 3dafaa1 da263cc 7deef83 28d3dab bf27d36 28d3dab 7deef83 7fd9023 7deef83 eb150c0 28d3dab da7f3ce 7deef83 eb150c0 7deef83 de900c7 7deef83 de900c7 7deef83 de900c7 7deef83 56df2d9 7deef83 56df2d9 7deef83 56df2d9 7deef83 0c39daa 7deef83 0c39daa 7deef83 0c39daa 7deef83 0c39daa 7deef83 0c39daa 7deef83 0c39daa 7deef83 45bbff4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
from contextlib import nullcontext
from torch.nn import functional as F
from utils import TOKENIZER, Dataset
from pedalboard import Pedalboard, Reverb, Compressor, Gain, Limiter
from pedalboard.io import AudioFile
import pandas as pd
import subprocess
import pretty_midi
import gradio as gr
import time
import copy
import types
import torch
import random
import spaces
import os
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
in_space = os.getenv("SYSTEM") == "spaces"
n_layer = 12
n_embd = 768
ctx_len = 2048
os.environ['RWKV_FLOAT_MODE'] = 'fp32'
os.environ['RWKV_RUN_DEVICE'] = 'cpu'
model_type = 'RWKV'
MODEL_NAME = 'model'
LENGTH_PER_TRIAL = round((2048) / 13) * 13
TEMPERATURE = 1.0
from model_run import RWKV_RNN
model = RWKV_RNN(MODEL_NAME, os.environ['RWKV_RUN_DEVICE'], model_type, n_layer, n_embd, ctx_len)
tokenizer = TOKENIZER()
temp_dir = 'temp'
if not os.path.exists(temp_dir):
os.makedirs(temp_dir)
def clear_midi(dir):
for file in os.listdir(dir):
if file.endswith('.mid'):
os.remove(os.path.join(dir, file))
clear_midi(temp_dir)
ctx_seed = "000000000000\n"
ctx = tokenizer.encode(ctx_seed)
src_len = len(ctx)
src_ctx = ctx.copy()
def humanize_notes(midi_events):
def humanize(value):
if value != 0:
humanize_offset = random.choice([-0.20, 0.20])
return max(0, int(value + humanize_offset))
return value
midi_events['start'] = midi_events['start'].apply(humanize)
midi_events['end'] = midi_events['end'].apply(humanize)
max_tick = 8 * 384
midi_events['end'] = midi_events['end'].clip(upper=max_tick)
return midi_events
@spaces.GPU(duration=60)
def generate_midi(LENGTH_PER_TRIAL, src_ctx, model, src_len, ctx_len, TEMPERATURE, top_k, tokenizer, ctx_seed, bpm):
midi_seq = []
for TRIAL in range(1):
t_begin = time.time_ns()
if TRIAL > 0:
midi_seq.append("\n")
ctx = src_ctx.copy()
model.clear()
midi_tokens = []
if TRIAL == 0:
init_state = types.SimpleNamespace()
for i in range(src_len):
x = ctx[:i+1]
if i == src_len - 1:
init_state.out = model.run(x)
else:
model.run(x)
model.save(init_state)
else:
model.load(init_state)
midi_seq.append(ctx_seed)
for i in range(src_len, src_len + LENGTH_PER_TRIAL):
x = ctx[:i+1]
x = x[-ctx_len:]
if i == src_len:
out = copy.deepcopy(init_state.out)
else:
out = model.run(x)
char = tokenizer.sample_logits(out, x, ctx_len, temperature=TEMPERATURE, top_k=top_k).item()
midi_tokens.append(char)
if len(midi_tokens) > 2:
midi_tokens.pop(0)
if midi_tokens == [11, 10]: # stop token pattern
break
midi_seq.append(tokenizer.decode([int(char)]))
if midi_tokens != [11, 10]:
ctx += [char]
t_end = time.time_ns()
trim_seq = "".join(midi_seq)
events = trim_seq.split("\n")
midi_events = []
sequence = []
rndm_num = 895645
for event in events:
if event.strip() == "":
midi_events.append(sequence)
sequence = []
rndm_num = random.randint(100000, 999999)
try:
pitch = int(event[0:2])
velocity = int(event[2:4])
start = int(event[4:8])
end = int(event[8:12])
except ValueError:
pitch = 0
velocity = 0
start = 0
end = 0
sequence.append({'file_name': f'rwkv_{rndm_num}', 'pitch': pitch, 'velocity': velocity, 'start': start, 'end': end})
if sequence:
midi_events.append(sequence)
midi_events = pd.DataFrame([pd.Series(event) for sequence in midi_events for event in sequence])
midi_events = midi_events[['file_name', 'pitch', 'velocity', 'start', 'end']]
midi_events = humanize_notes(midi_events)
midi_events = midi_events.sort_values(by=['file_name', 'start']).reset_index(drop=True)
midi_events = midi_events[(midi_events['start'] < 3072) & (midi_events['end'] <= 3072)]
for file_name, events in midi_events.groupby('file_name'):
midi_obj = pretty_midi.PrettyMIDI(initial_tempo=bpm, resolution=96)
instrument = pretty_midi.Instrument(0)
midi_obj.instruments.append(instrument)
for _, event in events.iterrows():
note = pretty_midi.Note(
pitch=event['pitch'],
velocity=event['velocity'],
start=midi_obj.tick_to_time(event['start']),
end=midi_obj.tick_to_time(event['end'])
)
instrument.notes.append(note)
midi_path = os.path.join(temp_dir, 'output.mid')
midi_obj.write(midi_path)
return midi_path
def render_wav(midi_file, uploaded_sf2=None, output_level='2.0'):
sf2_dir = 'sf2'
audio_format = 's16'
sample_rate = '44100'
gain = str(output_level)
if uploaded_sf2:
sf2_file = uploaded_sf2
else:
sf2_files = [f for f in os.listdir(os.path.join(sf2_dir)) if f.endswith('.sf2')]
if not sf2_files:
raise ValueError("No SoundFont (.sf2) file found in directory.")
sf2_file = os.path.join(sf2_dir, random.choice(sf2_files))
#print(f"Using SoundFont: {sf2_file}")
output_wav = os.path.join(temp_dir, 'output.wav')
with open(os.devnull, 'w') as devnull:
command = [
'fluidsynth', '-ni', sf2_file, midi_file, '-F', output_wav, '-r', str(sample_rate),
'-o', f'audio.file.format={audio_format}', '-g', str(gain)
]
subprocess.call(command, stdout=devnull, stderr=devnull)
return output_wav
def generate_and_return_files(bpm, temperature, top_k, uploaded_sf2=None, output_level='2.0'):
midi_events = generate_midi(
LENGTH_PER_TRIAL, src_ctx, model, src_len, ctx_len, temperature, top_k,
tokenizer, ctx_seed, bpm
)
midi_file = 'temp/output.mid'
wav_raw = render_wav(midi_file, uploaded_sf2, output_level)
wav_fx = os.path.join(temp_dir, 'output_fx.wav')
sfx_settings = [
{
'board': Pedalboard([
Reverb(room_size=0.50, wet_level=0.30, dry_level=0.75, width=1.0),
Compressor(threshold_db=-4.0, ratio=4.0, attack_ms=0.0, release_ms=300.0),
])
}
]
for setting in sfx_settings:
board = setting['board']
with AudioFile(wav_raw) as f:
with AudioFile(wav_fx, 'w', f.samplerate, f.num_channels) as o:
while f.tell() < f.frames:
chunk = f.read(int(f.samplerate))
effected = board(chunk, f.samplerate, reset=False)
o.write(effected)
return midi_file, wav_fx
custom_css = """
#container {
max-width: 1200px !important;
margin: 0 auto !important;
}
#generate-btn {
font-size: 18px;
color: white;
padding: 10px 20px;
border: none;
border-radius: 5px;
cursor: pointer;
background: linear-gradient(90deg, hsla(268, 90%, 70%, 1) 0%, hsla(260, 72%, 74%, 1) 50%, hsla(247, 73%, 65%, 1) 100%);
transition: background 1s ease;
}
#generate-btn:hover {
color: white;
background: linear-gradient(90deg, hsla(268, 90%, 62%, 1) 0%, hsla(260, 70%, 70%, 1) 50%, hsla(247, 73%, 55%, 1) 100%);
}
#container .prose {
text-align: center !important;
}
#container h1 {
font-weight: bold;
font-size: 40px;
margin: 0px;
}
#container p {
font-size: 18px;
text-align: center;
}
"""
with gr.Blocks(
css=custom_css,
theme=gr.themes.Default(
font=[gr.themes.GoogleFont("Roboto"), "sans-serif"],
primary_hue="violet",
secondary_hue="violet"
)
) as iface:
with gr.Column(elem_id="container"):
gr.Markdown("<h1>Pop-K</h1>")
gr.Markdown("<p>Pop-K is a small RWKV model that generates pop melodies in C major and A minor.</p>")
bpm = gr.Slider(minimum=50, maximum=200, step=1, value=100, label="BPM")
temperature = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=1.0, label="Temperature")
top_k = gr.Slider(minimum=4, maximum=32, step=1, value=20, label="Top-k")
output_level = gr.Slider(minimum=0, maximum=3, step=0.10, value=2.0, label="Output Gain")
generate_button = gr.Button("Generate", elem_id="generate-btn")
midi_file = gr.File(label="MIDI Output")
audio_file = gr.Audio(label="Audio Output", type="filepath")
soundfont = gr.File(label="Optional: Upload SoundFont (preset=0, bank=0)")
generate_button.click(
fn=generate_and_return_files,
inputs=[bpm, temperature, top_k, soundfont, output_level],
outputs=[midi_file, audio_file]
)
gr.Markdown("<p style='font-size: 16px;'>Developed by <a href='https://www.patchbanks.com/' target='_blank'><strong>Patchbanks</strong></a></p>")
iface.launch(share=True) |