File size: 9,371 Bytes
8df70dd
 
 
 
 
 
 
 
 
 
 
 
778a242
8df70dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f08fef
8df70dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77e3b7d
8df70dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f2999d
8df70dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import os
import pickle
import torch
import random
import subprocess
import re
import pretty_midi
import gradio as gr
from contextlib import nullcontext
from model import GPTConfig, GPT
from pedalboard import Pedalboard, Reverb, Compressor, Gain, Limiter
from pedalboard.io import AudioFile
import spaces

in_space = os.getenv("SYSTEM") == "spaces"

temp_dir = 'temp'
os.makedirs(temp_dir, exist_ok=True)

init_from = 'resume'
out_dir = 'checkpoints'
ckpt_load = 'model.pt'

start = "000000000000\n"
num_samples = 1
max_new_tokens = 768

seed = random.randint(1, 100000)
torch.manual_seed(seed)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16'
compile = False
exec(open('configurator.py').read())


torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
device_type = 'cpu' if 'cuda' in device else 'cpu'
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)

if init_from == 'resume':
    ckpt_path = os.path.join(out_dir, ckpt_load)
    checkpoint = torch.load(ckpt_path, map_location=device, weights_only=True)
    gptconf = GPTConfig(**checkpoint['model_args'])
    model = GPT(gptconf)
    state_dict = checkpoint['model']
    unwanted_prefix = '_orig_mod.'
    for k, v in list(state_dict.items()):
        if k.startswith(unwanted_prefix):
            state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
    model.load_state_dict(state_dict)
elif init_from.startswith('gpt2'):
    model = GPT.from_pretrained(init_from, dict(dropout=0.0))

model.eval()
model.to(device)
if compile:
    model = torch.compile(model)

tokenizer = re.compile(r'000000000000|\d{2}|\n')

meta_path = os.path.join('data', checkpoint['config']['dataset'], 'meta.pkl')
with open(meta_path, 'rb') as f:
    meta = pickle.load(f)
    stoi = meta.get('stoi', None)
    itos = meta.get('itos', None)

def encode(text):
    matches = tokenizer.findall(text)
    return [stoi[c] for c in matches]

def decode(encoded):
    return ''.join([itos[i] for i in encoded])

def clear_midi(dir):
    for file in os.listdir(dir):
        if file.endswith('.mid'):
            os.remove(os.path.join(dir, file))

clear_midi(temp_dir)


@spaces.GPU(duration=10)
def generate_midi(temperature, top_k):
    start_ids = encode(start)
    x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])
        
    midi_events = []
    seq_count = 0

    with torch.no_grad():
        for _ in range(num_samples):
            sequence = []
            y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k)
            tkn_seq = decode(y[0].tolist())
            lines = tkn_seq.splitlines()

            for event in lines:
                if event.startswith(start.strip()):
                    if sequence:
                        midi_events.append(sequence)
                        sequence = []
                    seq_count += 1
                elif event.strip() == "":
                    continue
                else:
                    try:
                        p = int(event[0:2])
                        v = int(event[2:4])
                        s = int(event[4:8])
                        e = int(event[8:12])
                    except ValueError:
                        p, v, s, e = 0, 0, 0, 0
                    sequence.append({'file_name': f'nanompc_{seq_count:02d}', 'pitch': p, 'velocity': v, 'start': s, 'end': e})

            if sequence:
                midi_events.append(sequence)

    round_bars = []
    
    for sequence in midi_events:
        filtered_sequence = []
        for event in sequence:
            if event['start'] < 1536 and event['end'] <= 1536:
                filtered_sequence.append(event)
        if filtered_sequence:
            round_bars.append(filtered_sequence)

    midi_events = round_bars

    for track in midi_events:
        track.sort(key=lambda x: x['start'])
        unique_notes = []
        
        for note in track:
            if not any(abs(note['start'] - n['start']) < 12 and note['pitch'] == n['pitch'] for n in unique_notes):
                unique_notes.append(note)
        
        track[:] = unique_notes 

    return midi_events


def write_single_midi(midi_events, bpm):
    midi_data = pretty_midi.PrettyMIDI(initial_tempo=bpm, resolution=96)
    midi_data.time_signature_changes.append(pretty_midi.containers.TimeSignature(4, 4, 0))
    instrument = pretty_midi.Instrument(0)
    midi_data.instruments.append(instrument)

    for event in midi_events[0]:
        pitch = event['pitch']
        velocity = event['velocity']
        start = midi_data.tick_to_time(event['start'])
        end = midi_data.tick_to_time(event['end'])
        note = pretty_midi.Note(pitch=pitch, velocity=velocity, start=start, end=end)
        instrument.notes.append(note)

    midi_path = os.path.join(temp_dir, 'output.mid')
    midi_data.write(midi_path)
    print(f"Generated: {midi_path}")


def render_wav(midi_file, uploaded_sf2=None, output_level='2.0'):
    sf2_dir = 'sf2_kits'
    audio_format = 's16'
    sample_rate = '44100'
    gain = str(output_level)

    if uploaded_sf2:
        sf2_file = uploaded_sf2
    else:
        sf2_files = [f for f in os.listdir(os.path.join(sf2_dir)) if f.endswith('.sf2')]
        if not sf2_files:
            raise ValueError("No SoundFont (.sf2) file found in directory.")
        sf2_file = os.path.join(sf2_dir, random.choice(sf2_files))

    output_wav = os.path.join(temp_dir, 'output.wav')

    with open(os.devnull, 'w') as devnull:
        command = [
            'fluidsynth', '-ni', sf2_file, midi_file, '-F', output_wav, '-r', str(sample_rate), 
            '-o', f'audio.file.format={audio_format}', '-g', str(gain)
        ]
        subprocess.call(command, stdout=devnull, stderr=devnull)

    return output_wav


def generate_and_return_files(bpm, temperature, top_k, uploaded_sf2=None, output_level='2.0'):
    midi_events = generate_midi(temperature, top_k)  
    if not midi_events:
        return "Error generating MIDI.", None, None
    
    write_single_midi(midi_events, bpm)
    
    midi_file = os.path.join(temp_dir, 'output.mid')
    wav_raw = render_wav(midi_file, uploaded_sf2, output_level)
    wav_fx = os.path.join(temp_dir, 'output_fx.wav')

    sfx_settings = [
        {
            'board': Pedalboard([
                Reverb(room_size=0.01, wet_level=random.uniform(0.005, 0.01), dry_level=0.75, width=1.0),
                Compressor(threshold_db=-3.0, ratio=8.0, attack_ms=0.0, release_ms=300.0),
            ])
        }
    ]

    for setting in sfx_settings:
        board = setting['board']

        with AudioFile(wav_raw) as f:
            with AudioFile(wav_fx, 'w', f.samplerate, f.num_channels) as o:
                while f.tell() < f.frames:
                    chunk = f.read(int(f.samplerate))
                    effected = board(chunk, f.samplerate, reset=False)
                    o.write(effected)

    return midi_file, wav_fx


custom_css = """
#container {
  max-width: 1200px !important;
  margin: 0 auto !important;
}
#generate-btn {
  font-size: 18px;
  color: white;
  padding: 10px 20px;
  border: none;
  border-radius: 5px;
  cursor: pointer;
  background: linear-gradient(90deg, hsla(268, 90%, 70%, 1) 0%, hsla(260, 72%, 74%, 1) 50%, hsla(247, 73%, 65%, 1) 100%);
  transition: background 1s ease;
}
#generate-btn:hover {
  color: white;
  background: linear-gradient(90deg, hsla(268, 90%, 62%, 1) 0%, hsla(260, 70%, 70%, 1) 50%, hsla(247, 73%, 55%, 1) 100%);
}
#container .prose {
  text-align: center !important;
}
#container h1 {
  font-weight: bold;
  font-size: 40px;
  margin: 0px;
}
#container p {
  font-size: 18px;
  text-align: center;
}

"""

with gr.Blocks(
    css=custom_css,
    theme=gr.themes.Default(
        font=[gr.themes.GoogleFont("Roboto"), "sans-serif"],
        primary_hue="violet",
        secondary_hue="violet"
    )
) as iface:
    with gr.Column(elem_id="container"):
        gr.Markdown("<h1>Neural Breaks</h1>")
        gr.Markdown("<p>Neural Breaks is a generative MIDI model trained on dynamic transcriptions of funk and soul drum breaks.</p>")

        bpm = gr.Slider(minimum=50, maximum=200, step=1, value=100, label="BPM")
        temperature = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=1.0, label="Temperature")
        top_k = gr.Slider(minimum=4, maximum=16, step=1, value=8, label="Top-k")
        output_level = gr.Slider(minimum=0, maximum=3, step=0.10, value=2.0, label="Output Gain")
        generate_button = gr.Button("Generate", elem_id="generate-btn")
        midi_file = gr.File(label="MIDI Output")
        audio_file = gr.Audio(label="Audio Output", type="filepath")
        soundfont = gr.File(label="Optional: Upload SoundFont (preset=0, bank=0)")

        generate_button.click(
            fn=generate_and_return_files,
            inputs=[bpm, temperature, top_k, soundfont, output_level],
            outputs=[midi_file, audio_file]
        )

        gr.Markdown("<p style='font-size: 16px;'>Developed by <a href='https://www.patchbanks.com/' target='_blank'><strong>Patchbanks</strong></a></p>")

iface.launch(share=True)