Spaces:
Running
Running
File size: 8,337 Bytes
ce9d604 508b4d3 ce9d604 27e1343 ce9d604 508b4d3 ce9d604 508b4d3 ce9d604 c6003d5 27e1343 c6003d5 ce9d604 508b4d3 ce9d604 508b4d3 ce9d604 508b4d3 ce9d604 508b4d3 ce9d604 508b4d3 ce9d604 508b4d3 7d3738d 508b4d3 e046828 508b4d3 ce9d604 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import os
import pickle
import torch
import random
import subprocess
import re
import pretty_midi
import gradio as gr
from contextlib import nullcontext
from model import GPTConfig, GPT
from pedalboard import Pedalboard, Reverb, Compressor, Gain, Limiter
from pedalboard.io import AudioFile
import gradio as gr
in_space = os.getenv("SYSTEM") == "spaces"
temp_dir = 'temp'
os.makedirs(temp_dir, exist_ok=True)
init_from = 'resume'
out_dir = 'checkpoints'
ckpt_load = 'model.pt'
start = "000000000000\n"
num_samples = 1
max_new_tokens = 384
seed = random.randint(1, 100000)
torch.manual_seed(seed)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16'
compile = False
exec(open('configurator.py').read())
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
device_type = 'cpu' if 'cuda' in device else 'cpu'
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
if init_from == 'resume':
ckpt_path = os.path.join(out_dir, ckpt_load)
checkpoint = torch.load(ckpt_path, map_location=device, weights_only=True)
gptconf = GPTConfig(**checkpoint['model_args'])
model = GPT(gptconf)
state_dict = checkpoint['model']
unwanted_prefix = '_orig_mod.'
for k, v in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
model.load_state_dict(state_dict)
elif init_from.startswith('gpt2'):
model = GPT.from_pretrained(init_from, dict(dropout=0.0))
model.eval()
model.to(device)
if compile:
model = torch.compile(model)
tokenizer = re.compile(r'000000000000|\d{2}|\n')
meta_path = os.path.join('data', checkpoint['config']['dataset'], 'meta.pkl')
with open(meta_path, 'rb') as f:
meta = pickle.load(f)
stoi = meta.get('stoi', None)
itos = meta.get('itos', None)
def encode(text):
matches = tokenizer.findall(text)
return [stoi[c] for c in matches]
def decode(encoded):
return ''.join([itos[i] for i in encoded])
def clear_midi(dir):
for file in os.listdir(dir):
if file.endswith('.mid'):
os.remove(os.path.join(dir, file))
clear_midi(temp_dir)
def generate_midi(temperature, top_k):
start_ids = encode(start)
x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])
midi_events = []
seq_count = 0
with torch.no_grad():
for _ in range(num_samples):
sequence = []
y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k)
tkn_seq = decode(y[0].tolist())
lines = tkn_seq.splitlines()
for event in lines:
if event.startswith(start.strip()):
if sequence:
midi_events.append(sequence)
sequence = []
seq_count += 1
elif event.strip() == "":
continue
else:
try:
p = int(event[0:2])
v = int(event[2:4])
s = int(event[4:8])
e = int(event[8:12])
except ValueError:
p, v, s, e = 0, 0, 0, 0
sequence.append({'file_name': f'nanompc_{seq_count:02d}', 'pitch': p, 'velocity': v, 'start': s, 'end': e})
if sequence:
midi_events.append(sequence)
round_bars = []
for sequence in midi_events:
filtered_sequence = []
for event in sequence:
if event['start'] < 768 and event['end'] <= 768:
filtered_sequence.append(event)
if filtered_sequence:
round_bars.append(filtered_sequence)
midi_events = round_bars
return midi_events
def write_midi(midi_events, bpm):
midi_data = pretty_midi.PrettyMIDI(initial_tempo=bpm, resolution=96)
midi_data.time_signature_changes.append(pretty_midi.containers.TimeSignature(4, 4, 0))
instrument = pretty_midi.Instrument(0)
midi_data.instruments.append(instrument)
for sequence in midi_events:
for event in sequence:
pitch = event['pitch']
velocity = event['velocity']
start = midi_data.tick_to_time(event['start'])
end = midi_data.tick_to_time(event['end'])
note = pretty_midi.Note(pitch=pitch, velocity=velocity, start=start, end=end)
instrument.notes.append(note)
midi_path = os.path.join(temp_dir, 'output.mid')
midi_data.write(midi_path)
print(f"Generated: {midi_path}")
def render_wav(midi_file, uploaded_sf2=None):
sf2_dir = 'sf2_kits'
audio_format = 's16'
sample_rate = '44100'
gain = '2.0'
if uploaded_sf2:
sf2_file = uploaded_sf2
else:
sf2_files = [f for f in os.listdir(sf2_dir) if f.endswith('.sf2')]
if not sf2_files:
raise ValueError("No SoundFont (.sf2) file found in directory.")
sf2_file = os.path.join(sf2_dir, random.choice(sf2_files))
print(f"Using SoundFont: {sf2_file}")
output_wav = os.path.join(temp_dir, 'output.wav')
with open(os.devnull, 'w') as devnull:
command = [
'fluidsynth', '-ni', sf2_file, midi_file, '-F', output_wav, '-r', str(sample_rate),
'-o', f'audio.file.format={audio_format}', '-g', str(gain)
]
subprocess.call(command, stdout=devnull, stderr=devnull)
return output_wav
def generate_and_return_files(bpm, temperature, top_k, uploaded_sf2=None):
midi_events = generate_midi(temperature, top_k)
if not midi_events:
return "Error generating MIDI.", None, None
write_midi(midi_events, bpm)
midi_file = os.path.join(temp_dir, 'output.mid')
wav_raw = render_wav(midi_file, uploaded_sf2)
wav_fx = os.path.join(temp_dir, 'output_fx.wav')
sfx_settings = [
{
'board': Pedalboard([
Reverb(room_size=0.01, wet_level=random.uniform(0.005, 0.01), dry_level=0.75, width=1.0),
Compressor(threshold_db=-3.0, ratio=8.0, attack_ms=0.0, release_ms=300.0),
])
}
]
for setting in sfx_settings:
board = setting['board']
with AudioFile(wav_raw) as f:
with AudioFile(wav_fx, 'w', f.samplerate, f.num_channels) as o:
while f.tell() < f.frames:
chunk = f.read(int(f.samplerate))
effected = board(chunk, f.samplerate, reset=False)
o.write(effected)
return midi_file, wav_fx
custom_css = """
#generate-btn {
background-color: #6366f1 !important;
color: white !important;
border: none !important;
font-size: 16px;
padding: 10px 20px;
border-radius: 5px;
cursor: pointer;
}
#generate-btn:hover {
background-color: #4f51c5 !important;
}
"""
with gr.Blocks(css=custom_css, theme="soft") as iface:
gr.Markdown("<h1 style='font-weight: bold; text-align: center;'>nanoMPC - AI Midi Drum Sequencer</h1>")
gr.Markdown("<p style='text-align:center;'>The Drumwave model generates retro drum machine beats.</p>")
with gr.Row():
with gr.Column(scale=1):
bpm = gr.Slider(minimum=50, maximum=200, step=1, value=120, label="BPM")
temperature = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=1.0, label="Temperature")
top_k = gr.Slider(minimum=4, maximum=256, step=1, value=128, label="Top-k")
soundfont = gr.File(label="Optional: Upload SoundFont (preset=0, bank=0)")
with gr.Column(scale=1):
midi_file = gr.File(label="MIDI File Output")
audio_file = gr.Audio(label="Generated Audio Output", type="filepath")
generate_button = gr.Button("Generate", elem_id="generate-btn")
generate_button.click(
fn=generate_and_return_files,
inputs=[bpm, temperature, top_k, soundfont],
outputs=[midi_file, audio_file]
)
iface.launch(share=True)
|