File size: 41,502 Bytes
9a393e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 |
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object_detection.utils.config_util."""
import os
import tensorflow as tf
from google.protobuf import text_format
from object_detection.protos import eval_pb2
from object_detection.protos import image_resizer_pb2
from object_detection.protos import input_reader_pb2
from object_detection.protos import model_pb2
from object_detection.protos import pipeline_pb2
from object_detection.protos import train_pb2
from object_detection.utils import config_util
def _write_config(config, config_path):
"""Writes a config object to disk."""
config_text = text_format.MessageToString(config)
with tf.gfile.Open(config_path, "wb") as f:
f.write(config_text)
def _update_optimizer_with_constant_learning_rate(optimizer, learning_rate):
"""Adds a new constant learning rate."""
constant_lr = optimizer.learning_rate.constant_learning_rate
constant_lr.learning_rate = learning_rate
def _update_optimizer_with_exponential_decay_learning_rate(
optimizer, learning_rate):
"""Adds a new exponential decay learning rate."""
exponential_lr = optimizer.learning_rate.exponential_decay_learning_rate
exponential_lr.initial_learning_rate = learning_rate
def _update_optimizer_with_manual_step_learning_rate(
optimizer, initial_learning_rate, learning_rate_scaling):
"""Adds a learning rate schedule."""
manual_lr = optimizer.learning_rate.manual_step_learning_rate
manual_lr.initial_learning_rate = initial_learning_rate
for i in range(3):
schedule = manual_lr.schedule.add()
schedule.learning_rate = initial_learning_rate * learning_rate_scaling**i
def _update_optimizer_with_cosine_decay_learning_rate(
optimizer, learning_rate, warmup_learning_rate):
"""Adds a new cosine decay learning rate."""
cosine_lr = optimizer.learning_rate.cosine_decay_learning_rate
cosine_lr.learning_rate_base = learning_rate
cosine_lr.warmup_learning_rate = warmup_learning_rate
class ConfigUtilTest(tf.test.TestCase):
def _create_and_load_test_configs(self, pipeline_config):
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
_write_config(pipeline_config, pipeline_config_path)
return config_util.get_configs_from_pipeline_file(pipeline_config_path)
def test_get_configs_from_pipeline_file(self):
"""Test that proto configs can be read from pipeline config file."""
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.model.faster_rcnn.num_classes = 10
pipeline_config.train_config.batch_size = 32
pipeline_config.train_input_reader.label_map_path = "path/to/label_map"
pipeline_config.eval_config.num_examples = 20
pipeline_config.eval_input_reader.add().queue_capacity = 100
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
self.assertProtoEquals(pipeline_config.model, configs["model"])
self.assertProtoEquals(pipeline_config.train_config,
configs["train_config"])
self.assertProtoEquals(pipeline_config.train_input_reader,
configs["train_input_config"])
self.assertProtoEquals(pipeline_config.eval_config,
configs["eval_config"])
self.assertProtoEquals(pipeline_config.eval_input_reader,
configs["eval_input_configs"])
def test_create_configs_from_pipeline_proto(self):
"""Tests creating configs dictionary from pipeline proto."""
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.model.faster_rcnn.num_classes = 10
pipeline_config.train_config.batch_size = 32
pipeline_config.train_input_reader.label_map_path = "path/to/label_map"
pipeline_config.eval_config.num_examples = 20
pipeline_config.eval_input_reader.add().queue_capacity = 100
configs = config_util.create_configs_from_pipeline_proto(pipeline_config)
self.assertProtoEquals(pipeline_config.model, configs["model"])
self.assertProtoEquals(pipeline_config.train_config,
configs["train_config"])
self.assertProtoEquals(pipeline_config.train_input_reader,
configs["train_input_config"])
self.assertProtoEquals(pipeline_config.eval_config, configs["eval_config"])
self.assertProtoEquals(pipeline_config.eval_input_reader,
configs["eval_input_configs"])
def test_create_pipeline_proto_from_configs(self):
"""Tests that proto can be reconstructed from configs dictionary."""
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.model.faster_rcnn.num_classes = 10
pipeline_config.train_config.batch_size = 32
pipeline_config.train_input_reader.label_map_path = "path/to/label_map"
pipeline_config.eval_config.num_examples = 20
pipeline_config.eval_input_reader.add().queue_capacity = 100
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
pipeline_config_reconstructed = (
config_util.create_pipeline_proto_from_configs(configs))
self.assertEqual(pipeline_config, pipeline_config_reconstructed)
def test_save_pipeline_config(self):
"""Tests that the pipeline config is properly saved to disk."""
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.model.faster_rcnn.num_classes = 10
pipeline_config.train_config.batch_size = 32
pipeline_config.train_input_reader.label_map_path = "path/to/label_map"
pipeline_config.eval_config.num_examples = 20
pipeline_config.eval_input_reader.add().queue_capacity = 100
config_util.save_pipeline_config(pipeline_config, self.get_temp_dir())
configs = config_util.get_configs_from_pipeline_file(
os.path.join(self.get_temp_dir(), "pipeline.config"))
pipeline_config_reconstructed = (
config_util.create_pipeline_proto_from_configs(configs))
self.assertEqual(pipeline_config, pipeline_config_reconstructed)
def test_get_configs_from_multiple_files(self):
"""Tests that proto configs can be read from multiple files."""
temp_dir = self.get_temp_dir()
# Write model config file.
model_config_path = os.path.join(temp_dir, "model.config")
model = model_pb2.DetectionModel()
model.faster_rcnn.num_classes = 10
_write_config(model, model_config_path)
# Write train config file.
train_config_path = os.path.join(temp_dir, "train.config")
train_config = train_config = train_pb2.TrainConfig()
train_config.batch_size = 32
_write_config(train_config, train_config_path)
# Write train input config file.
train_input_config_path = os.path.join(temp_dir, "train_input.config")
train_input_config = input_reader_pb2.InputReader()
train_input_config.label_map_path = "path/to/label_map"
_write_config(train_input_config, train_input_config_path)
# Write eval config file.
eval_config_path = os.path.join(temp_dir, "eval.config")
eval_config = eval_pb2.EvalConfig()
eval_config.num_examples = 20
_write_config(eval_config, eval_config_path)
# Write eval input config file.
eval_input_config_path = os.path.join(temp_dir, "eval_input.config")
eval_input_config = input_reader_pb2.InputReader()
eval_input_config.label_map_path = "path/to/another/label_map"
_write_config(eval_input_config, eval_input_config_path)
configs = config_util.get_configs_from_multiple_files(
model_config_path=model_config_path,
train_config_path=train_config_path,
train_input_config_path=train_input_config_path,
eval_config_path=eval_config_path,
eval_input_config_path=eval_input_config_path)
self.assertProtoEquals(model, configs["model"])
self.assertProtoEquals(train_config, configs["train_config"])
self.assertProtoEquals(train_input_config,
configs["train_input_config"])
self.assertProtoEquals(eval_config, configs["eval_config"])
self.assertProtoEquals(eval_input_config, configs["eval_input_configs"][0])
def _assertOptimizerWithNewLearningRate(self, optimizer_name):
"""Asserts successful updating of all learning rate schemes."""
original_learning_rate = 0.7
learning_rate_scaling = 0.1
warmup_learning_rate = 0.07
hparams = tf.contrib.training.HParams(learning_rate=0.15)
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
# Constant learning rate.
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
optimizer = getattr(pipeline_config.train_config.optimizer, optimizer_name)
_update_optimizer_with_constant_learning_rate(optimizer,
original_learning_rate)
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
configs = config_util.merge_external_params_with_configs(configs, hparams)
optimizer = getattr(configs["train_config"].optimizer, optimizer_name)
constant_lr = optimizer.learning_rate.constant_learning_rate
self.assertAlmostEqual(hparams.learning_rate, constant_lr.learning_rate)
# Exponential decay learning rate.
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
optimizer = getattr(pipeline_config.train_config.optimizer, optimizer_name)
_update_optimizer_with_exponential_decay_learning_rate(
optimizer, original_learning_rate)
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
configs = config_util.merge_external_params_with_configs(configs, hparams)
optimizer = getattr(configs["train_config"].optimizer, optimizer_name)
exponential_lr = optimizer.learning_rate.exponential_decay_learning_rate
self.assertAlmostEqual(hparams.learning_rate,
exponential_lr.initial_learning_rate)
# Manual step learning rate.
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
optimizer = getattr(pipeline_config.train_config.optimizer, optimizer_name)
_update_optimizer_with_manual_step_learning_rate(
optimizer, original_learning_rate, learning_rate_scaling)
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
configs = config_util.merge_external_params_with_configs(configs, hparams)
optimizer = getattr(configs["train_config"].optimizer, optimizer_name)
manual_lr = optimizer.learning_rate.manual_step_learning_rate
self.assertAlmostEqual(hparams.learning_rate,
manual_lr.initial_learning_rate)
for i, schedule in enumerate(manual_lr.schedule):
self.assertAlmostEqual(hparams.learning_rate * learning_rate_scaling**i,
schedule.learning_rate)
# Cosine decay learning rate.
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
optimizer = getattr(pipeline_config.train_config.optimizer, optimizer_name)
_update_optimizer_with_cosine_decay_learning_rate(optimizer,
original_learning_rate,
warmup_learning_rate)
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
configs = config_util.merge_external_params_with_configs(configs, hparams)
optimizer = getattr(configs["train_config"].optimizer, optimizer_name)
cosine_lr = optimizer.learning_rate.cosine_decay_learning_rate
self.assertAlmostEqual(hparams.learning_rate, cosine_lr.learning_rate_base)
warmup_scale_factor = warmup_learning_rate / original_learning_rate
self.assertAlmostEqual(hparams.learning_rate * warmup_scale_factor,
cosine_lr.warmup_learning_rate)
def testRMSPropWithNewLearingRate(self):
"""Tests new learning rates for RMSProp Optimizer."""
self._assertOptimizerWithNewLearningRate("rms_prop_optimizer")
def testMomentumOptimizerWithNewLearningRate(self):
"""Tests new learning rates for Momentum Optimizer."""
self._assertOptimizerWithNewLearningRate("momentum_optimizer")
def testAdamOptimizerWithNewLearningRate(self):
"""Tests new learning rates for Adam Optimizer."""
self._assertOptimizerWithNewLearningRate("adam_optimizer")
def testGenericConfigOverride(self):
"""Tests generic config overrides for all top-level configs."""
# Set one parameter for each of the top-level pipeline configs:
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.model.ssd.num_classes = 1
pipeline_config.train_config.batch_size = 1
pipeline_config.eval_config.num_visualizations = 1
pipeline_config.train_input_reader.label_map_path = "/some/path"
pipeline_config.eval_input_reader.add().label_map_path = "/some/path"
pipeline_config.graph_rewriter.quantization.weight_bits = 1
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
_write_config(pipeline_config, pipeline_config_path)
# Override each of the parameters:
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
hparams = tf.contrib.training.HParams(
**{
"model.ssd.num_classes": 2,
"train_config.batch_size": 2,
"train_input_config.label_map_path": "/some/other/path",
"eval_config.num_visualizations": 2,
"graph_rewriter_config.quantization.weight_bits": 2
})
configs = config_util.merge_external_params_with_configs(configs, hparams)
# Ensure that the parameters have the overridden values:
self.assertEqual(2, configs["model"].ssd.num_classes)
self.assertEqual(2, configs["train_config"].batch_size)
self.assertEqual("/some/other/path",
configs["train_input_config"].label_map_path)
self.assertEqual(2, configs["eval_config"].num_visualizations)
self.assertEqual(2,
configs["graph_rewriter_config"].quantization.weight_bits)
def testNewBatchSize(self):
"""Tests that batch size is updated appropriately."""
original_batch_size = 2
hparams = tf.contrib.training.HParams(batch_size=16)
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.train_config.batch_size = original_batch_size
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
configs = config_util.merge_external_params_with_configs(configs, hparams)
new_batch_size = configs["train_config"].batch_size
self.assertEqual(16, new_batch_size)
def testNewBatchSizeWithClipping(self):
"""Tests that batch size is clipped to 1 from below."""
original_batch_size = 2
hparams = tf.contrib.training.HParams(batch_size=0.5)
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.train_config.batch_size = original_batch_size
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
configs = config_util.merge_external_params_with_configs(configs, hparams)
new_batch_size = configs["train_config"].batch_size
self.assertEqual(1, new_batch_size) # Clipped to 1.0.
def testOverwriteBatchSizeWithKeyValue(self):
"""Tests that batch size is overwritten based on key/value."""
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.train_config.batch_size = 2
configs = self._create_and_load_test_configs(pipeline_config)
hparams = tf.contrib.training.HParams(**{"train_config.batch_size": 10})
configs = config_util.merge_external_params_with_configs(configs, hparams)
new_batch_size = configs["train_config"].batch_size
self.assertEqual(10, new_batch_size)
def testKeyValueOverrideBadKey(self):
"""Tests that overwriting with a bad key causes an exception."""
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
configs = self._create_and_load_test_configs(pipeline_config)
hparams = tf.contrib.training.HParams(**{"train_config.no_such_field": 10})
with self.assertRaises(ValueError):
config_util.merge_external_params_with_configs(configs, hparams)
def testOverwriteBatchSizeWithBadValueType(self):
"""Tests that overwriting with a bad valuye type causes an exception."""
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.train_config.batch_size = 2
configs = self._create_and_load_test_configs(pipeline_config)
# Type should be an integer, but we're passing a string "10".
hparams = tf.contrib.training.HParams(**{"train_config.batch_size": "10"})
with self.assertRaises(TypeError):
config_util.merge_external_params_with_configs(configs, hparams)
def testNewMomentumOptimizerValue(self):
"""Tests that new momentum value is updated appropriately."""
original_momentum_value = 0.4
hparams = tf.contrib.training.HParams(momentum_optimizer_value=1.1)
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
optimizer_config = pipeline_config.train_config.optimizer.rms_prop_optimizer
optimizer_config.momentum_optimizer_value = original_momentum_value
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
configs = config_util.merge_external_params_with_configs(configs, hparams)
optimizer_config = configs["train_config"].optimizer.rms_prop_optimizer
new_momentum_value = optimizer_config.momentum_optimizer_value
self.assertAlmostEqual(1.0, new_momentum_value) # Clipped to 1.0.
def testNewClassificationLocalizationWeightRatio(self):
"""Tests that the loss weight ratio is updated appropriately."""
original_localization_weight = 0.1
original_classification_weight = 0.2
new_weight_ratio = 5.0
hparams = tf.contrib.training.HParams(
classification_localization_weight_ratio=new_weight_ratio)
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.model.ssd.loss.localization_weight = (
original_localization_weight)
pipeline_config.model.ssd.loss.classification_weight = (
original_classification_weight)
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
configs = config_util.merge_external_params_with_configs(configs, hparams)
loss = configs["model"].ssd.loss
self.assertAlmostEqual(1.0, loss.localization_weight)
self.assertAlmostEqual(new_weight_ratio, loss.classification_weight)
def testNewFocalLossParameters(self):
"""Tests that the loss weight ratio is updated appropriately."""
original_alpha = 1.0
original_gamma = 1.0
new_alpha = 0.3
new_gamma = 2.0
hparams = tf.contrib.training.HParams(
focal_loss_alpha=new_alpha, focal_loss_gamma=new_gamma)
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
classification_loss = pipeline_config.model.ssd.loss.classification_loss
classification_loss.weighted_sigmoid_focal.alpha = original_alpha
classification_loss.weighted_sigmoid_focal.gamma = original_gamma
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
configs = config_util.merge_external_params_with_configs(configs, hparams)
classification_loss = configs["model"].ssd.loss.classification_loss
self.assertAlmostEqual(new_alpha,
classification_loss.weighted_sigmoid_focal.alpha)
self.assertAlmostEqual(new_gamma,
classification_loss.weighted_sigmoid_focal.gamma)
def testMergingKeywordArguments(self):
"""Tests that keyword arguments get merged as do hyperparameters."""
original_num_train_steps = 100
desired_num_train_steps = 10
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.train_config.num_steps = original_num_train_steps
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
override_dict = {"train_steps": desired_num_train_steps}
configs = config_util.merge_external_params_with_configs(
configs, kwargs_dict=override_dict)
train_steps = configs["train_config"].num_steps
self.assertEqual(desired_num_train_steps, train_steps)
def testGetNumberOfClasses(self):
"""Tests that number of classes can be retrieved."""
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.model.faster_rcnn.num_classes = 20
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
number_of_classes = config_util.get_number_of_classes(configs["model"])
self.assertEqual(20, number_of_classes)
def testNewTrainInputPath(self):
"""Tests that train input path can be overwritten with single file."""
original_train_path = ["path/to/data"]
new_train_path = "another/path/to/data"
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
reader_config = pipeline_config.train_input_reader.tf_record_input_reader
reader_config.input_path.extend(original_train_path)
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
override_dict = {"train_input_path": new_train_path}
configs = config_util.merge_external_params_with_configs(
configs, kwargs_dict=override_dict)
reader_config = configs["train_input_config"].tf_record_input_reader
final_path = reader_config.input_path
self.assertEqual([new_train_path], final_path)
def testNewTrainInputPathList(self):
"""Tests that train input path can be overwritten with multiple files."""
original_train_path = ["path/to/data"]
new_train_path = ["another/path/to/data", "yet/another/path/to/data"]
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
reader_config = pipeline_config.train_input_reader.tf_record_input_reader
reader_config.input_path.extend(original_train_path)
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
override_dict = {"train_input_path": new_train_path}
configs = config_util.merge_external_params_with_configs(
configs, kwargs_dict=override_dict)
reader_config = configs["train_input_config"].tf_record_input_reader
final_path = reader_config.input_path
self.assertEqual(new_train_path, final_path)
def testNewLabelMapPath(self):
"""Tests that label map path can be overwritten in input readers."""
original_label_map_path = "path/to/original/label_map"
new_label_map_path = "path//to/new/label_map"
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
train_input_reader = pipeline_config.train_input_reader
train_input_reader.label_map_path = original_label_map_path
eval_input_reader = pipeline_config.eval_input_reader.add()
eval_input_reader.label_map_path = original_label_map_path
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
override_dict = {"label_map_path": new_label_map_path}
configs = config_util.merge_external_params_with_configs(
configs, kwargs_dict=override_dict)
self.assertEqual(new_label_map_path,
configs["train_input_config"].label_map_path)
for eval_input_config in configs["eval_input_configs"]:
self.assertEqual(new_label_map_path, eval_input_config.label_map_path)
def testDontOverwriteEmptyLabelMapPath(self):
"""Tests that label map path will not by overwritten with empty string."""
original_label_map_path = "path/to/original/label_map"
new_label_map_path = ""
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
train_input_reader = pipeline_config.train_input_reader
train_input_reader.label_map_path = original_label_map_path
eval_input_reader = pipeline_config.eval_input_reader.add()
eval_input_reader.label_map_path = original_label_map_path
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
override_dict = {"label_map_path": new_label_map_path}
configs = config_util.merge_external_params_with_configs(
configs, kwargs_dict=override_dict)
self.assertEqual(original_label_map_path,
configs["train_input_config"].label_map_path)
self.assertEqual(original_label_map_path,
configs["eval_input_configs"][0].label_map_path)
def testNewMaskType(self):
"""Tests that mask type can be overwritten in input readers."""
original_mask_type = input_reader_pb2.NUMERICAL_MASKS
new_mask_type = input_reader_pb2.PNG_MASKS
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
train_input_reader = pipeline_config.train_input_reader
train_input_reader.mask_type = original_mask_type
eval_input_reader = pipeline_config.eval_input_reader.add()
eval_input_reader.mask_type = original_mask_type
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
override_dict = {"mask_type": new_mask_type}
configs = config_util.merge_external_params_with_configs(
configs, kwargs_dict=override_dict)
self.assertEqual(new_mask_type, configs["train_input_config"].mask_type)
self.assertEqual(new_mask_type, configs["eval_input_configs"][0].mask_type)
def testUseMovingAverageForEval(self):
use_moving_averages_orig = False
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = use_moving_averages_orig
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
override_dict = {"eval_with_moving_averages": True}
configs = config_util.merge_external_params_with_configs(
configs, kwargs_dict=override_dict)
self.assertEqual(True, configs["eval_config"].use_moving_averages)
def testGetImageResizerConfig(self):
"""Tests that number of classes can be retrieved."""
model_config = model_pb2.DetectionModel()
model_config.faster_rcnn.image_resizer.fixed_shape_resizer.height = 100
model_config.faster_rcnn.image_resizer.fixed_shape_resizer.width = 300
image_resizer_config = config_util.get_image_resizer_config(model_config)
self.assertEqual(image_resizer_config.fixed_shape_resizer.height, 100)
self.assertEqual(image_resizer_config.fixed_shape_resizer.width, 300)
def testGetSpatialImageSizeFromFixedShapeResizerConfig(self):
image_resizer_config = image_resizer_pb2.ImageResizer()
image_resizer_config.fixed_shape_resizer.height = 100
image_resizer_config.fixed_shape_resizer.width = 200
image_shape = config_util.get_spatial_image_size(image_resizer_config)
self.assertAllEqual(image_shape, [100, 200])
def testGetSpatialImageSizeFromAspectPreservingResizerConfig(self):
image_resizer_config = image_resizer_pb2.ImageResizer()
image_resizer_config.keep_aspect_ratio_resizer.min_dimension = 100
image_resizer_config.keep_aspect_ratio_resizer.max_dimension = 600
image_resizer_config.keep_aspect_ratio_resizer.pad_to_max_dimension = True
image_shape = config_util.get_spatial_image_size(image_resizer_config)
self.assertAllEqual(image_shape, [600, 600])
def testGetSpatialImageSizeFromAspectPreservingResizerDynamic(self):
image_resizer_config = image_resizer_pb2.ImageResizer()
image_resizer_config.keep_aspect_ratio_resizer.min_dimension = 100
image_resizer_config.keep_aspect_ratio_resizer.max_dimension = 600
image_shape = config_util.get_spatial_image_size(image_resizer_config)
self.assertAllEqual(image_shape, [-1, -1])
def testEvalShuffle(self):
"""Tests that `eval_shuffle` keyword arguments are applied correctly."""
original_shuffle = True
desired_shuffle = False
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_input_reader.add().shuffle = original_shuffle
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
override_dict = {"eval_shuffle": desired_shuffle}
configs = config_util.merge_external_params_with_configs(
configs, kwargs_dict=override_dict)
self.assertEqual(desired_shuffle, configs["eval_input_configs"][0].shuffle)
def testTrainShuffle(self):
"""Tests that `train_shuffle` keyword arguments are applied correctly."""
original_shuffle = True
desired_shuffle = False
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.train_input_reader.shuffle = original_shuffle
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
override_dict = {"train_shuffle": desired_shuffle}
configs = config_util.merge_external_params_with_configs(
configs, kwargs_dict=override_dict)
train_shuffle = configs["train_input_config"].shuffle
self.assertEqual(desired_shuffle, train_shuffle)
def testOverWriteRetainOriginalImages(self):
"""Tests that `train_shuffle` keyword arguments are applied correctly."""
original_retain_original_images = True
desired_retain_original_images = False
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.retain_original_images = (
original_retain_original_images)
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
override_dict = {
"retain_original_images_in_eval": desired_retain_original_images
}
configs = config_util.merge_external_params_with_configs(
configs, kwargs_dict=override_dict)
retain_original_images = configs["eval_config"].retain_original_images
self.assertEqual(desired_retain_original_images, retain_original_images)
def testOverwriteAllEvalSampling(self):
original_num_eval_examples = 1
new_num_eval_examples = 10
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_input_reader.add().sample_1_of_n_examples = (
original_num_eval_examples)
pipeline_config.eval_input_reader.add().sample_1_of_n_examples = (
original_num_eval_examples)
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
override_dict = {"sample_1_of_n_eval_examples": new_num_eval_examples}
configs = config_util.merge_external_params_with_configs(
configs, kwargs_dict=override_dict)
for eval_input_config in configs["eval_input_configs"]:
self.assertEqual(new_num_eval_examples,
eval_input_config.sample_1_of_n_examples)
def testOverwriteAllEvalNumEpochs(self):
original_num_epochs = 10
new_num_epochs = 1
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_input_reader.add().num_epochs = original_num_epochs
pipeline_config.eval_input_reader.add().num_epochs = original_num_epochs
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
override_dict = {"eval_num_epochs": new_num_epochs}
configs = config_util.merge_external_params_with_configs(
configs, kwargs_dict=override_dict)
for eval_input_config in configs["eval_input_configs"]:
self.assertEqual(new_num_epochs, eval_input_config.num_epochs)
def testUpdateMaskTypeForAllInputConfigs(self):
original_mask_type = input_reader_pb2.NUMERICAL_MASKS
new_mask_type = input_reader_pb2.PNG_MASKS
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
train_config = pipeline_config.train_input_reader
train_config.mask_type = original_mask_type
eval_1 = pipeline_config.eval_input_reader.add()
eval_1.mask_type = original_mask_type
eval_1.name = "eval_1"
eval_2 = pipeline_config.eval_input_reader.add()
eval_2.mask_type = original_mask_type
eval_2.name = "eval_2"
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
override_dict = {"mask_type": new_mask_type}
configs = config_util.merge_external_params_with_configs(
configs, kwargs_dict=override_dict)
self.assertEqual(configs["train_input_config"].mask_type, new_mask_type)
for eval_input_config in configs["eval_input_configs"]:
self.assertEqual(eval_input_config.mask_type, new_mask_type)
def testErrorOverwritingMultipleInputConfig(self):
original_shuffle = False
new_shuffle = True
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
eval_1 = pipeline_config.eval_input_reader.add()
eval_1.shuffle = original_shuffle
eval_1.name = "eval_1"
eval_2 = pipeline_config.eval_input_reader.add()
eval_2.shuffle = original_shuffle
eval_2.name = "eval_2"
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
override_dict = {"eval_shuffle": new_shuffle}
with self.assertRaises(ValueError):
configs = config_util.merge_external_params_with_configs(
configs, kwargs_dict=override_dict)
def testCheckAndParseInputConfigKey(self):
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_input_reader.add().name = "eval_1"
pipeline_config.eval_input_reader.add().name = "eval_2"
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
specific_shuffle_update_key = "eval_input_configs:eval_2:shuffle"
is_valid_input_config_key, key_name, input_name, field_name = (
config_util.check_and_parse_input_config_key(
configs, specific_shuffle_update_key))
self.assertTrue(is_valid_input_config_key)
self.assertEqual(key_name, "eval_input_configs")
self.assertEqual(input_name, "eval_2")
self.assertEqual(field_name, "shuffle")
legacy_shuffle_update_key = "eval_shuffle"
is_valid_input_config_key, key_name, input_name, field_name = (
config_util.check_and_parse_input_config_key(configs,
legacy_shuffle_update_key))
self.assertTrue(is_valid_input_config_key)
self.assertEqual(key_name, "eval_input_configs")
self.assertEqual(input_name, None)
self.assertEqual(field_name, "shuffle")
non_input_config_update_key = "label_map_path"
is_valid_input_config_key, key_name, input_name, field_name = (
config_util.check_and_parse_input_config_key(
configs, non_input_config_update_key))
self.assertFalse(is_valid_input_config_key)
self.assertEqual(key_name, None)
self.assertEqual(input_name, None)
self.assertEqual(field_name, "label_map_path")
with self.assertRaisesRegexp(ValueError,
"Invalid key format when overriding configs."):
config_util.check_and_parse_input_config_key(
configs, "train_input_config:shuffle")
with self.assertRaisesRegexp(
ValueError, "Invalid key_name when overriding input config."):
config_util.check_and_parse_input_config_key(
configs, "invalid_key_name:train_name:shuffle")
with self.assertRaisesRegexp(
ValueError, "Invalid input_name when overriding input config."):
config_util.check_and_parse_input_config_key(
configs, "eval_input_configs:unknown_eval_name:shuffle")
with self.assertRaisesRegexp(
ValueError, "Invalid field_name when overriding input config."):
config_util.check_and_parse_input_config_key(
configs, "eval_input_configs:eval_2:unknown_field_name")
def testUpdateInputReaderConfigSuccess(self):
original_shuffle = False
new_shuffle = True
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.train_input_reader.shuffle = original_shuffle
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
config_util.update_input_reader_config(
configs,
key_name="train_input_config",
input_name=None,
field_name="shuffle",
value=new_shuffle)
self.assertEqual(configs["train_input_config"].shuffle, new_shuffle)
config_util.update_input_reader_config(
configs,
key_name="train_input_config",
input_name=None,
field_name="shuffle",
value=new_shuffle)
self.assertEqual(configs["train_input_config"].shuffle, new_shuffle)
def testUpdateInputReaderConfigErrors(self):
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_input_reader.add().name = "same_eval_name"
pipeline_config.eval_input_reader.add().name = "same_eval_name"
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
with self.assertRaisesRegexp(ValueError,
"Duplicate input name found when overriding."):
config_util.update_input_reader_config(
configs,
key_name="eval_input_configs",
input_name="same_eval_name",
field_name="shuffle",
value=False)
with self.assertRaisesRegexp(
ValueError, "Input name name_not_exist not found when overriding."):
config_util.update_input_reader_config(
configs,
key_name="eval_input_configs",
input_name="name_not_exist",
field_name="shuffle",
value=False)
with self.assertRaisesRegexp(ValueError,
"Unknown input config overriding."):
config_util.update_input_reader_config(
configs,
key_name="eval_input_configs",
input_name=None,
field_name="shuffle",
value=False)
if __name__ == "__main__":
tf.test.main()
|