File size: 9,114 Bytes
9a393e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tensorflow_models.object_detection.metrics.calibration_evaluation.""" # pylint: disable=line-too-long
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from object_detection.core import standard_fields
from object_detection.metrics import calibration_evaluation
def _get_categories_list():
return [{
'id': 1,
'name': 'person'
}, {
'id': 2,
'name': 'dog'
}, {
'id': 3,
'name': 'cat'
}]
class CalibrationDetectionEvaluationTest(tf.test.TestCase):
def _get_ece(self, ece_op, update_op):
"""Return scalar expected calibration error."""
with self.test_session() as sess:
metrics_vars = tf.get_collection(tf.GraphKeys.METRIC_VARIABLES)
sess.run(tf.variables_initializer(var_list=metrics_vars))
_ = sess.run(update_op)
return sess.run(ece_op)
def testGetECEWithMatchingGroundtruthAndDetections(self):
"""Tests that ECE is calculated correctly when box matches exist."""
calibration_evaluator = calibration_evaluation.CalibrationDetectionEvaluator(
_get_categories_list(), iou_threshold=0.5)
input_data_fields = standard_fields.InputDataFields
detection_fields = standard_fields.DetectionResultFields
# All gt and detection boxes match.
base_eval_dict = {
input_data_fields.key:
tf.constant(['image_1', 'image_2', 'image_3']),
input_data_fields.groundtruth_boxes:
tf.constant([[[100., 100., 200., 200.]],
[[50., 50., 100., 100.]],
[[25., 25., 50., 50.]]],
dtype=tf.float32),
detection_fields.detection_boxes:
tf.constant([[[100., 100., 200., 200.]],
[[50., 50., 100., 100.]],
[[25., 25., 50., 50.]]],
dtype=tf.float32),
input_data_fields.groundtruth_classes:
tf.constant([[1], [2], [3]], dtype=tf.int64),
# Note that, in the zero ECE case, the detection class for image_2
# should NOT match groundtruth, since the detection score is zero.
detection_fields.detection_scores:
tf.constant([[1.0], [0.0], [1.0]], dtype=tf.float32)
}
# Zero ECE (perfectly calibrated).
zero_ece_eval_dict = base_eval_dict.copy()
zero_ece_eval_dict[detection_fields.detection_classes] = tf.constant(
[[1], [1], [3]], dtype=tf.int64)
zero_ece_op, zero_ece_update_op = (
calibration_evaluator.get_estimator_eval_metric_ops(zero_ece_eval_dict)
['CalibrationError/ExpectedCalibrationError'])
zero_ece = self._get_ece(zero_ece_op, zero_ece_update_op)
self.assertAlmostEqual(zero_ece, 0.0)
# ECE of 1 (poorest calibration).
one_ece_eval_dict = base_eval_dict.copy()
one_ece_eval_dict[detection_fields.detection_classes] = tf.constant(
[[3], [2], [1]], dtype=tf.int64)
one_ece_op, one_ece_update_op = (
calibration_evaluator.get_estimator_eval_metric_ops(one_ece_eval_dict)
['CalibrationError/ExpectedCalibrationError'])
one_ece = self._get_ece(one_ece_op, one_ece_update_op)
self.assertAlmostEqual(one_ece, 1.0)
def testGetECEWithUnmatchedGroundtruthAndDetections(self):
"""Tests that ECE is correctly calculated when boxes are unmatched."""
calibration_evaluator = calibration_evaluation.CalibrationDetectionEvaluator(
_get_categories_list(), iou_threshold=0.5)
input_data_fields = standard_fields.InputDataFields
detection_fields = standard_fields.DetectionResultFields
# No gt and detection boxes match.
eval_dict = {
input_data_fields.key:
tf.constant(['image_1', 'image_2', 'image_3']),
input_data_fields.groundtruth_boxes:
tf.constant([[[100., 100., 200., 200.]],
[[50., 50., 100., 100.]],
[[25., 25., 50., 50.]]],
dtype=tf.float32),
detection_fields.detection_boxes:
tf.constant([[[50., 50., 100., 100.]],
[[25., 25., 50., 50.]],
[[100., 100., 200., 200.]]],
dtype=tf.float32),
input_data_fields.groundtruth_classes:
tf.constant([[1], [2], [3]], dtype=tf.int64),
detection_fields.detection_classes:
tf.constant([[1], [1], [3]], dtype=tf.int64),
# Detection scores of zero when boxes are unmatched = ECE of zero.
detection_fields.detection_scores:
tf.constant([[0.0], [0.0], [0.0]], dtype=tf.float32)
}
ece_op, update_op = calibration_evaluator.get_estimator_eval_metric_ops(
eval_dict)['CalibrationError/ExpectedCalibrationError']
ece = self._get_ece(ece_op, update_op)
self.assertAlmostEqual(ece, 0.0)
def testGetECEWithBatchedDetections(self):
"""Tests that ECE is correct with multiple detections per image."""
calibration_evaluator = calibration_evaluation.CalibrationDetectionEvaluator(
_get_categories_list(), iou_threshold=0.5)
input_data_fields = standard_fields.InputDataFields
detection_fields = standard_fields.DetectionResultFields
# Note that image_2 has mismatched classes and detection scores but should
# still produce ECE of 0 because detection scores are also 0.
eval_dict = {
input_data_fields.key:
tf.constant(['image_1', 'image_2', 'image_3']),
input_data_fields.groundtruth_boxes:
tf.constant([[[100., 100., 200., 200.], [50., 50., 100., 100.]],
[[50., 50., 100., 100.], [100., 100., 200., 200.]],
[[25., 25., 50., 50.], [100., 100., 200., 200.]]],
dtype=tf.float32),
detection_fields.detection_boxes:
tf.constant([[[100., 100., 200., 200.], [50., 50., 100., 100.]],
[[50., 50., 100., 100.], [25., 25., 50., 50.]],
[[25., 25., 50., 50.], [100., 100., 200., 200.]]],
dtype=tf.float32),
input_data_fields.groundtruth_classes:
tf.constant([[1, 2], [2, 3], [3, 1]], dtype=tf.int64),
detection_fields.detection_classes:
tf.constant([[1, 2], [1, 1], [3, 1]], dtype=tf.int64),
detection_fields.detection_scores:
tf.constant([[1.0, 1.0], [0.0, 0.0], [1.0, 1.0]], dtype=tf.float32)
}
ece_op, update_op = calibration_evaluator.get_estimator_eval_metric_ops(
eval_dict)['CalibrationError/ExpectedCalibrationError']
ece = self._get_ece(ece_op, update_op)
self.assertAlmostEqual(ece, 0.0)
def testGetECEWhenImagesFilteredByIsAnnotated(self):
"""Tests that ECE is correct when detections filtered by is_annotated."""
calibration_evaluator = calibration_evaluation.CalibrationDetectionEvaluator(
_get_categories_list(), iou_threshold=0.5)
input_data_fields = standard_fields.InputDataFields
detection_fields = standard_fields.DetectionResultFields
# ECE will be 0 only if the third image is filtered by is_annotated.
eval_dict = {
input_data_fields.key:
tf.constant(['image_1', 'image_2', 'image_3']),
input_data_fields.groundtruth_boxes:
tf.constant([[[100., 100., 200., 200.]],
[[50., 50., 100., 100.]],
[[25., 25., 50., 50.]]],
dtype=tf.float32),
detection_fields.detection_boxes:
tf.constant([[[100., 100., 200., 200.]],
[[50., 50., 100., 100.]],
[[25., 25., 50., 50.]]],
dtype=tf.float32),
input_data_fields.groundtruth_classes:
tf.constant([[1], [2], [1]], dtype=tf.int64),
detection_fields.detection_classes:
tf.constant([[1], [1], [3]], dtype=tf.int64),
detection_fields.detection_scores:
tf.constant([[1.0], [0.0], [1.0]], dtype=tf.float32),
'is_annotated': tf.constant([True, True, False], dtype=tf.bool)
}
ece_op, update_op = calibration_evaluator.get_estimator_eval_metric_ops(
eval_dict)['CalibrationError/ExpectedCalibrationError']
ece = self._get_ece(ece_op, update_op)
self.assertAlmostEqual(ece, 0.0)
if __name__ == '__main__':
tf.test.main()
|