File size: 21,164 Bytes
9a393e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tensorflow Example proto decoder for object detection.

A decoder to decode string tensors containing serialized tensorflow.Example
protos for object detection.
"""
import tensorflow as tf

from object_detection.core import data_decoder
from object_detection.core import standard_fields as fields
from object_detection.protos import input_reader_pb2
from object_detection.utils import label_map_util

slim_example_decoder = tf.contrib.slim.tfexample_decoder


class _ClassTensorHandler(slim_example_decoder.Tensor):
  """An ItemHandler to fetch class ids from class text."""

  def __init__(self,
               tensor_key,
               label_map_proto_file,
               shape_keys=None,
               shape=None,
               default_value=''):
    """Initializes the LookupTensor handler.

    Simply calls a vocabulary (most often, a label mapping) lookup.

    Args:
      tensor_key: the name of the `TFExample` feature to read the tensor from.
      label_map_proto_file: File path to a text format LabelMapProto message
        mapping class text to id.
      shape_keys: Optional name or list of names of the TF-Example feature in
        which the tensor shape is stored. If a list, then each corresponds to
        one dimension of the shape.
      shape: Optional output shape of the `Tensor`. If provided, the `Tensor` is
        reshaped accordingly.
      default_value: The value used when the `tensor_key` is not found in a
        particular `TFExample`.

    Raises:
      ValueError: if both `shape_keys` and `shape` are specified.
    """
    name_to_id = label_map_util.get_label_map_dict(
        label_map_proto_file, use_display_name=False)
    # We use a default_value of -1, but we expect all labels to be contained
    # in the label map.
    name_to_id_table = tf.contrib.lookup.HashTable(
        initializer=tf.contrib.lookup.KeyValueTensorInitializer(
            keys=tf.constant(list(name_to_id.keys())),
            values=tf.constant(list(name_to_id.values()), dtype=tf.int64)),
        default_value=-1)
    display_name_to_id = label_map_util.get_label_map_dict(
        label_map_proto_file, use_display_name=True)
    # We use a default_value of -1, but we expect all labels to be contained
    # in the label map.
    display_name_to_id_table = tf.contrib.lookup.HashTable(
        initializer=tf.contrib.lookup.KeyValueTensorInitializer(
            keys=tf.constant(list(display_name_to_id.keys())),
            values=tf.constant(
                list(display_name_to_id.values()), dtype=tf.int64)),
        default_value=-1)

    self._name_to_id_table = name_to_id_table
    self._display_name_to_id_table = display_name_to_id_table
    super(_ClassTensorHandler, self).__init__(tensor_key, shape_keys, shape,
                                              default_value)

  def tensors_to_item(self, keys_to_tensors):
    unmapped_tensor = super(_ClassTensorHandler,
                            self).tensors_to_item(keys_to_tensors)
    return tf.maximum(self._name_to_id_table.lookup(unmapped_tensor),
                      self._display_name_to_id_table.lookup(unmapped_tensor))


class _BackupHandler(slim_example_decoder.ItemHandler):
  """An ItemHandler that tries two ItemHandlers in order."""

  def __init__(self, handler, backup):
    """Initializes the BackupHandler handler.

    If the first Handler's tensors_to_item returns a Tensor with no elements,
    the second Handler is used.

    Args:
      handler: The primary ItemHandler.
      backup: The backup ItemHandler.

    Raises:
      ValueError: if either is not an ItemHandler.
    """
    if not isinstance(handler, slim_example_decoder.ItemHandler):
      raise ValueError('Primary handler is of type %s instead of ItemHandler' %
                       type(handler))
    if not isinstance(backup, slim_example_decoder.ItemHandler):
      raise ValueError(
          'Backup handler is of type %s instead of ItemHandler' % type(backup))
    self._handler = handler
    self._backup = backup
    super(_BackupHandler, self).__init__(handler.keys + backup.keys)

  def tensors_to_item(self, keys_to_tensors):
    item = self._handler.tensors_to_item(keys_to_tensors)
    return tf.cond(
        pred=tf.equal(tf.reduce_prod(tf.shape(item)), 0),
        true_fn=lambda: self._backup.tensors_to_item(keys_to_tensors),
        false_fn=lambda: item)


class TfExampleDecoder(data_decoder.DataDecoder):
  """Tensorflow Example proto decoder."""

  def __init__(self,
               load_instance_masks=False,
               instance_mask_type=input_reader_pb2.NUMERICAL_MASKS,
               label_map_proto_file=None,
               use_display_name=False,
               dct_method='',
               num_keypoints=0,
               num_additional_channels=0,
               load_multiclass_scores=False):
    """Constructor sets keys_to_features and items_to_handlers.

    Args:
      load_instance_masks: whether or not to load and handle instance masks.
      instance_mask_type: type of instance masks. Options are provided in
        input_reader.proto. This is only used if `load_instance_masks` is True.
      label_map_proto_file: a file path to a
        object_detection.protos.StringIntLabelMap proto. If provided, then the
        mapped IDs of 'image/object/class/text' will take precedence over the
        existing 'image/object/class/label' ID.  Also, if provided, it is
        assumed that 'image/object/class/text' will be in the data.
      use_display_name: whether or not to use the `display_name` for label
        mapping (instead of `name`).  Only used if label_map_proto_file is
        provided.
      dct_method: An optional string. Defaults to None. It only takes
        effect when image format is jpeg, used to specify a hint about the
        algorithm used for jpeg decompression. Currently valid values
        are ['INTEGER_FAST', 'INTEGER_ACCURATE']. The hint may be ignored, for
        example, the jpeg library does not have that specific option.
      num_keypoints: the number of keypoints per object.
      num_additional_channels: how many additional channels to use.
      load_multiclass_scores: Whether to load multiclass scores associated with
        boxes.

    Raises:
      ValueError: If `instance_mask_type` option is not one of
        input_reader_pb2.DEFAULT, input_reader_pb2.NUMERICAL, or
        input_reader_pb2.PNG_MASKS.
    """
    # TODO(rathodv): delete unused `use_display_name` argument once we change
    # other decoders to handle label maps similarly.
    del use_display_name
    self.keys_to_features = {
        'image/encoded':
            tf.FixedLenFeature((), tf.string, default_value=''),
        'image/format':
            tf.FixedLenFeature((), tf.string, default_value='jpeg'),
        'image/filename':
            tf.FixedLenFeature((), tf.string, default_value=''),
        'image/key/sha256':
            tf.FixedLenFeature((), tf.string, default_value=''),
        'image/source_id':
            tf.FixedLenFeature((), tf.string, default_value=''),
        'image/height':
            tf.FixedLenFeature((), tf.int64, default_value=1),
        'image/width':
            tf.FixedLenFeature((), tf.int64, default_value=1),
        # Image-level labels.
        'image/class/text':
            tf.VarLenFeature(tf.string),
        'image/class/label':
            tf.VarLenFeature(tf.int64),
        # Object boxes and classes.
        'image/object/bbox/xmin':
            tf.VarLenFeature(tf.float32),
        'image/object/bbox/xmax':
            tf.VarLenFeature(tf.float32),
        'image/object/bbox/ymin':
            tf.VarLenFeature(tf.float32),
        'image/object/bbox/ymax':
            tf.VarLenFeature(tf.float32),
        'image/object/class/label':
            tf.VarLenFeature(tf.int64),
        'image/object/class/text':
            tf.VarLenFeature(tf.string),
        'image/object/area':
            tf.VarLenFeature(tf.float32),
        'image/object/is_crowd':
            tf.VarLenFeature(tf.int64),
        'image/object/difficult':
            tf.VarLenFeature(tf.int64),
        'image/object/group_of':
            tf.VarLenFeature(tf.int64),
        'image/object/weight':
            tf.VarLenFeature(tf.float32),

    }
    # We are checking `dct_method` instead of passing it directly in order to
    # ensure TF version 1.6 compatibility.
    if dct_method:
      image = slim_example_decoder.Image(
          image_key='image/encoded',
          format_key='image/format',
          channels=3,
          dct_method=dct_method)
      additional_channel_image = slim_example_decoder.Image(
          image_key='image/additional_channels/encoded',
          format_key='image/format',
          channels=1,
          repeated=True,
          dct_method=dct_method)
    else:
      image = slim_example_decoder.Image(
          image_key='image/encoded', format_key='image/format', channels=3)
      additional_channel_image = slim_example_decoder.Image(
          image_key='image/additional_channels/encoded',
          format_key='image/format',
          channels=1,
          repeated=True)
    self.items_to_handlers = {
        fields.InputDataFields.image:
            image,
        fields.InputDataFields.source_id: (
            slim_example_decoder.Tensor('image/source_id')),
        fields.InputDataFields.key: (
            slim_example_decoder.Tensor('image/key/sha256')),
        fields.InputDataFields.filename: (
            slim_example_decoder.Tensor('image/filename')),
        # Object boxes and classes.
        fields.InputDataFields.groundtruth_boxes: (
            slim_example_decoder.BoundingBox(['ymin', 'xmin', 'ymax', 'xmax'],
                                             'image/object/bbox/')),
        fields.InputDataFields.groundtruth_area:
            slim_example_decoder.Tensor('image/object/area'),
        fields.InputDataFields.groundtruth_is_crowd: (
            slim_example_decoder.Tensor('image/object/is_crowd')),
        fields.InputDataFields.groundtruth_difficult: (
            slim_example_decoder.Tensor('image/object/difficult')),
        fields.InputDataFields.groundtruth_group_of: (
            slim_example_decoder.Tensor('image/object/group_of')),
        fields.InputDataFields.groundtruth_weights: (
            slim_example_decoder.Tensor('image/object/weight')),

    }
    if load_multiclass_scores:
      self.keys_to_features[
          'image/object/class/multiclass_scores'] = tf.VarLenFeature(tf.float32)
      self.items_to_handlers[fields.InputDataFields.multiclass_scores] = (
          slim_example_decoder.Tensor('image/object/class/multiclass_scores'))
    if num_additional_channels > 0:
      self.keys_to_features[
          'image/additional_channels/encoded'] = tf.FixedLenFeature(
              (num_additional_channels,), tf.string)
      self.items_to_handlers[
          fields.InputDataFields.
          image_additional_channels] = additional_channel_image
    self._num_keypoints = num_keypoints
    if num_keypoints > 0:
      self.keys_to_features['image/object/keypoint/x'] = (
          tf.VarLenFeature(tf.float32))
      self.keys_to_features['image/object/keypoint/y'] = (
          tf.VarLenFeature(tf.float32))
      self.items_to_handlers[fields.InputDataFields.groundtruth_keypoints] = (
          slim_example_decoder.ItemHandlerCallback(
              ['image/object/keypoint/y', 'image/object/keypoint/x'],
              self._reshape_keypoints))
    if load_instance_masks:
      if instance_mask_type in (input_reader_pb2.DEFAULT,
                                input_reader_pb2.NUMERICAL_MASKS):
        self.keys_to_features['image/object/mask'] = (
            tf.VarLenFeature(tf.float32))
        self.items_to_handlers[
            fields.InputDataFields.groundtruth_instance_masks] = (
                slim_example_decoder.ItemHandlerCallback(
                    ['image/object/mask', 'image/height', 'image/width'],
                    self._reshape_instance_masks))
      elif instance_mask_type == input_reader_pb2.PNG_MASKS:
        self.keys_to_features['image/object/mask'] = tf.VarLenFeature(tf.string)
        self.items_to_handlers[
            fields.InputDataFields.groundtruth_instance_masks] = (
                slim_example_decoder.ItemHandlerCallback(
                    ['image/object/mask', 'image/height', 'image/width'],
                    self._decode_png_instance_masks))
      else:
        raise ValueError('Did not recognize the `instance_mask_type` option.')
    if label_map_proto_file:
      # If the label_map_proto is provided, try to use it in conjunction with
      # the class text, and fall back to a materialized ID.
      label_handler = _BackupHandler(
          _ClassTensorHandler(
              'image/object/class/text', label_map_proto_file,
              default_value=''),
          slim_example_decoder.Tensor('image/object/class/label'))
      image_label_handler = _BackupHandler(
          _ClassTensorHandler(
              fields.TfExampleFields.image_class_text,
              label_map_proto_file,
              default_value=''),
          slim_example_decoder.Tensor(fields.TfExampleFields.image_class_label))
    else:
      label_handler = slim_example_decoder.Tensor('image/object/class/label')
      image_label_handler = slim_example_decoder.Tensor(
          fields.TfExampleFields.image_class_label)
    self.items_to_handlers[
        fields.InputDataFields.groundtruth_classes] = label_handler
    self.items_to_handlers[
        fields.InputDataFields.groundtruth_image_classes] = image_label_handler

  def decode(self, tf_example_string_tensor):
    """Decodes serialized tensorflow example and returns a tensor dictionary.

    Args:
      tf_example_string_tensor: a string tensor holding a serialized tensorflow
        example proto.

    Returns:
      A dictionary of the following tensors.
      fields.InputDataFields.image - 3D uint8 tensor of shape [None, None, 3]
        containing image.
      fields.InputDataFields.original_image_spatial_shape - 1D int32 tensor of
        shape [2] containing shape of the image.
      fields.InputDataFields.source_id - string tensor containing original
        image id.
      fields.InputDataFields.key - string tensor with unique sha256 hash key.
      fields.InputDataFields.filename - string tensor with original dataset
        filename.
      fields.InputDataFields.groundtruth_boxes - 2D float32 tensor of shape
        [None, 4] containing box corners.
      fields.InputDataFields.groundtruth_classes - 1D int64 tensor of shape
        [None] containing classes for the boxes.
      fields.InputDataFields.groundtruth_weights - 1D float32 tensor of
        shape [None] indicating the weights of groundtruth boxes.
      fields.InputDataFields.groundtruth_area - 1D float32 tensor of shape
        [None] containing containing object mask area in pixel squared.
      fields.InputDataFields.groundtruth_is_crowd - 1D bool tensor of shape
        [None] indicating if the boxes enclose a crowd.

    Optional:
      fields.InputDataFields.image_additional_channels - 3D uint8 tensor of
        shape [None, None, num_additional_channels]. 1st dim is height; 2nd dim
        is width; 3rd dim is the number of additional channels.
      fields.InputDataFields.groundtruth_difficult - 1D bool tensor of shape
        [None] indicating if the boxes represent `difficult` instances.
      fields.InputDataFields.groundtruth_group_of - 1D bool tensor of shape
        [None] indicating if the boxes represent `group_of` instances.
      fields.InputDataFields.groundtruth_keypoints - 3D float32 tensor of
        shape [None, None, 2] containing keypoints, where the coordinates of
        the keypoints are ordered (y, x).
      fields.InputDataFields.groundtruth_instance_masks - 3D float32 tensor of
        shape [None, None, None] containing instance masks.
      fields.InputDataFields.groundtruth_image_classes - 1D uint64 of shape
        [None] containing classes for the boxes.
      fields.InputDataFields.multiclass_scores - 1D float32 tensor of shape
        [None * num_classes] containing flattened multiclass scores for
        groundtruth boxes.
    """
    serialized_example = tf.reshape(tf_example_string_tensor, shape=[])
    decoder = slim_example_decoder.TFExampleDecoder(self.keys_to_features,
                                                    self.items_to_handlers)
    keys = decoder.list_items()
    tensors = decoder.decode(serialized_example, items=keys)
    tensor_dict = dict(zip(keys, tensors))
    is_crowd = fields.InputDataFields.groundtruth_is_crowd
    tensor_dict[is_crowd] = tf.cast(tensor_dict[is_crowd], dtype=tf.bool)
    tensor_dict[fields.InputDataFields.image].set_shape([None, None, 3])
    tensor_dict[fields.InputDataFields.original_image_spatial_shape] = tf.shape(
        tensor_dict[fields.InputDataFields.image])[:2]

    if fields.InputDataFields.image_additional_channels in tensor_dict:
      channels = tensor_dict[fields.InputDataFields.image_additional_channels]
      channels = tf.squeeze(channels, axis=3)
      channels = tf.transpose(channels, perm=[1, 2, 0])
      tensor_dict[fields.InputDataFields.image_additional_channels] = channels

    def default_groundtruth_weights():
      return tf.ones(
          [tf.shape(tensor_dict[fields.InputDataFields.groundtruth_boxes])[0]],
          dtype=tf.float32)

    tensor_dict[fields.InputDataFields.groundtruth_weights] = tf.cond(
        tf.greater(
            tf.shape(
                tensor_dict[fields.InputDataFields.groundtruth_weights])[0],
            0), lambda: tensor_dict[fields.InputDataFields.groundtruth_weights],
        default_groundtruth_weights)
    return tensor_dict

  def _reshape_keypoints(self, keys_to_tensors):
    """Reshape keypoints.

    The instance segmentation masks are reshaped to [num_instances,
    num_keypoints, 2].

    Args:
      keys_to_tensors: a dictionary from keys to tensors.

    Returns:
      A 3-D float tensor of shape [num_instances, num_keypoints, 2] with values
        in {0, 1}.
    """
    y = keys_to_tensors['image/object/keypoint/y']
    if isinstance(y, tf.SparseTensor):
      y = tf.sparse_tensor_to_dense(y)
    y = tf.expand_dims(y, 1)
    x = keys_to_tensors['image/object/keypoint/x']
    if isinstance(x, tf.SparseTensor):
      x = tf.sparse_tensor_to_dense(x)
    x = tf.expand_dims(x, 1)
    keypoints = tf.concat([y, x], 1)
    keypoints = tf.reshape(keypoints, [-1, self._num_keypoints, 2])
    return keypoints

  def _reshape_instance_masks(self, keys_to_tensors):
    """Reshape instance segmentation masks.

    The instance segmentation masks are reshaped to [num_instances, height,
    width].

    Args:
      keys_to_tensors: a dictionary from keys to tensors.

    Returns:
      A 3-D float tensor of shape [num_instances, height, width] with values
        in {0, 1}.
    """
    height = keys_to_tensors['image/height']
    width = keys_to_tensors['image/width']
    to_shape = tf.cast(tf.stack([-1, height, width]), tf.int32)
    masks = keys_to_tensors['image/object/mask']
    if isinstance(masks, tf.SparseTensor):
      masks = tf.sparse_tensor_to_dense(masks)
    masks = tf.reshape(tf.to_float(tf.greater(masks, 0.0)), to_shape)
    return tf.cast(masks, tf.float32)

  def _decode_png_instance_masks(self, keys_to_tensors):
    """Decode PNG instance segmentation masks and stack into dense tensor.

    The instance segmentation masks are reshaped to [num_instances, height,
    width].

    Args:
      keys_to_tensors: a dictionary from keys to tensors.

    Returns:
      A 3-D float tensor of shape [num_instances, height, width] with values
        in {0, 1}.
    """

    def decode_png_mask(image_buffer):
      image = tf.squeeze(
          tf.image.decode_image(image_buffer, channels=1), axis=2)
      image.set_shape([None, None])
      image = tf.to_float(tf.greater(image, 0))
      return image

    png_masks = keys_to_tensors['image/object/mask']
    height = keys_to_tensors['image/height']
    width = keys_to_tensors['image/width']
    if isinstance(png_masks, tf.SparseTensor):
      png_masks = tf.sparse_tensor_to_dense(png_masks, default_value='')
    return tf.cond(
        tf.greater(tf.size(png_masks), 0),
        lambda: tf.map_fn(decode_png_mask, png_masks, dtype=tf.float32),
        lambda: tf.zeros(tf.to_int32(tf.stack([0, height, width]))))