File size: 112,202 Bytes
9a393e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Faster R-CNN meta-architecture definition.

General tensorflow implementation of Faster R-CNN detection models.

See Faster R-CNN: Ren, Shaoqing, et al.
"Faster R-CNN: Towards real-time object detection with region proposal
networks." Advances in neural information processing systems. 2015.

We allow for three modes: number_of_stages={1, 2, 3}. In case of 1 stage,
all of the user facing methods (e.g., predict, postprocess, loss) can be used as
if the model consisted only of the RPN, returning class agnostic proposals
(these can be thought of as approximate detections with no associated class
information).  In case of 2 stages, proposals are computed, then passed
through a second stage "box classifier" to yield (multi-class) detections.
Finally, in case of 3 stages which is only used during eval, proposals are
computed, then passed through a second stage "box classifier" that will compute
refined boxes and classes, and then features are pooled from the refined and
non-maximum suppressed boxes and are passed through the box classifier again. If
number of stages is 3 during training it will be reduced to two automatically.

Implementations of Faster R-CNN models must define a new
FasterRCNNFeatureExtractor and override three methods: `preprocess`,
`_extract_proposal_features` (the first stage of the model), and
`_extract_box_classifier_features` (the second stage of the model). Optionally,
the `restore_fn` method can be overridden.  See tests for an example.

A few important notes:
+ Batching conventions:  We support batched inference and training where
all images within a batch have the same resolution.  Batch sizes are determined
dynamically via the shape of the input tensors (rather than being specified
directly as, e.g., a model constructor).

A complication is that due to non-max suppression, we are not guaranteed to get
the same number of proposals from the first stage RPN (region proposal network)
for each image (though in practice, we should often get the same number of
proposals).  For this reason we pad to a max number of proposals per image
within a batch. This `self.max_num_proposals` property is set to the
`first_stage_max_proposals` parameter at inference time and the
`second_stage_batch_size` at training time since we subsample the batch to
be sent through the box classifier during training.

For the second stage of the pipeline, we arrange the proposals for all images
within the batch along a single batch dimension.  For example, the input to
_extract_box_classifier_features is a tensor of shape
`[total_num_proposals, crop_height, crop_width, depth]` where
total_num_proposals is batch_size * self.max_num_proposals.  (And note that per
the above comment, a subset of these entries correspond to zero paddings.)

+ Coordinate representations:
Following the API (see model.DetectionModel definition), our outputs after
postprocessing operations are always normalized boxes however, internally, we
sometimes convert to absolute --- e.g. for loss computation.  In particular,
anchors and proposal_boxes are both represented as absolute coordinates.

Images are resized in the `preprocess` method.

The Faster R-CNN meta architecture has two post-processing methods
`_postprocess_rpn` which is applied after first stage and
`_postprocess_box_classifier` which is applied after second stage. There are
three different ways post-processing can happen depending on number_of_stages
configured in the meta architecture:

1. When number_of_stages is 1:
  `_postprocess_rpn` is run as part of the `postprocess` method where
  true_image_shapes is used to clip proposals, perform non-max suppression and
  normalize them.
2. When number of stages is 2:
  `_postprocess_rpn` is run as part of the `_predict_second_stage` method where
  `resized_image_shapes` is used to clip proposals, perform non-max suppression
  and normalize them. In this case `postprocess` method skips `_postprocess_rpn`
  and only runs `_postprocess_box_classifier` using `true_image_shapes` to clip
  detections, perform non-max suppression and normalize them.
3. When number of stages is 3:
  `_postprocess_rpn` is run as part of the `_predict_second_stage` using
  `resized_image_shapes` to clip proposals, perform non-max suppression and
  normalize them. Subsequently, `_postprocess_box_classifier` is run as part of
  `_predict_third_stage` using `true_image_shapes` to clip detections, peform
  non-max suppression and normalize them. In this case, the `postprocess` method
  skips both `_postprocess_rpn` and `_postprocess_box_classifier`.
"""
import abc
import functools
import tensorflow as tf

from object_detection.anchor_generators import grid_anchor_generator
from object_detection.builders import box_predictor_builder
from object_detection.core import box_list
from object_detection.core import box_list_ops
from object_detection.core import box_predictor
from object_detection.core import losses
from object_detection.core import model
from object_detection.core import standard_fields as fields
from object_detection.core import target_assigner
from object_detection.utils import ops
from object_detection.utils import shape_utils

slim = tf.contrib.slim


class FasterRCNNFeatureExtractor(object):
  """Faster R-CNN Feature Extractor definition."""

  def __init__(self,
               is_training,
               first_stage_features_stride,
               batch_norm_trainable=False,
               reuse_weights=None,
               weight_decay=0.0):
    """Constructor.

    Args:
      is_training: A boolean indicating whether the training version of the
        computation graph should be constructed.
      first_stage_features_stride: Output stride of extracted RPN feature map.
      batch_norm_trainable: Whether to update batch norm parameters during
        training or not. When training with a relative large batch size
        (e.g. 8), it could be desirable to enable batch norm update.
      reuse_weights: Whether to reuse variables. Default is None.
      weight_decay: float weight decay for feature extractor (default: 0.0).
    """
    self._is_training = is_training
    self._first_stage_features_stride = first_stage_features_stride
    self._train_batch_norm = (batch_norm_trainable and is_training)
    self._reuse_weights = reuse_weights
    self._weight_decay = weight_decay

  @abc.abstractmethod
  def preprocess(self, resized_inputs):
    """Feature-extractor specific preprocessing (minus image resizing)."""
    pass

  def extract_proposal_features(self, preprocessed_inputs, scope):
    """Extracts first stage RPN features.

    This function is responsible for extracting feature maps from preprocessed
    images.  These features are used by the region proposal network (RPN) to
    predict proposals.

    Args:
      preprocessed_inputs: A [batch, height, width, channels] float tensor
        representing a batch of images.
      scope: A scope name.

    Returns:
      rpn_feature_map: A tensor with shape [batch, height, width, depth]
      activations: A dictionary mapping activation tensor names to tensors.
    """
    with tf.variable_scope(scope, values=[preprocessed_inputs]):
      return self._extract_proposal_features(preprocessed_inputs, scope)

  @abc.abstractmethod
  def _extract_proposal_features(self, preprocessed_inputs, scope):
    """Extracts first stage RPN features, to be overridden."""
    pass

  def extract_box_classifier_features(self, proposal_feature_maps, scope):
    """Extracts second stage box classifier features.

    Args:
      proposal_feature_maps: A 4-D float tensor with shape
        [batch_size * self.max_num_proposals, crop_height, crop_width, depth]
        representing the feature map cropped to each proposal.
      scope: A scope name.

    Returns:
      proposal_classifier_features: A 4-D float tensor with shape
        [batch_size * self.max_num_proposals, height, width, depth]
        representing box classifier features for each proposal.
    """
    with tf.variable_scope(
        scope, values=[proposal_feature_maps], reuse=tf.AUTO_REUSE):
      return self._extract_box_classifier_features(proposal_feature_maps, scope)

  @abc.abstractmethod
  def _extract_box_classifier_features(self, proposal_feature_maps, scope):
    """Extracts second stage box classifier features, to be overridden."""
    pass

  def restore_from_classification_checkpoint_fn(
      self,
      first_stage_feature_extractor_scope,
      second_stage_feature_extractor_scope):
    """Returns a map of variables to load from a foreign checkpoint.

    Args:
      first_stage_feature_extractor_scope: A scope name for the first stage
        feature extractor.
      second_stage_feature_extractor_scope: A scope name for the second stage
        feature extractor.

    Returns:
      A dict mapping variable names (to load from a checkpoint) to variables in
      the model graph.
    """
    variables_to_restore = {}
    for variable in tf.global_variables():
      for scope_name in [first_stage_feature_extractor_scope,
                         second_stage_feature_extractor_scope]:
        if variable.op.name.startswith(scope_name):
          var_name = variable.op.name.replace(scope_name + '/', '')
          variables_to_restore[var_name] = variable
    return variables_to_restore


class FasterRCNNMetaArch(model.DetectionModel):
  """Faster R-CNN Meta-architecture definition."""

  def __init__(self,
               is_training,
               num_classes,
               image_resizer_fn,
               feature_extractor,
               number_of_stages,
               first_stage_anchor_generator,
               first_stage_target_assigner,
               first_stage_atrous_rate,
               first_stage_box_predictor_arg_scope_fn,
               first_stage_box_predictor_kernel_size,
               first_stage_box_predictor_depth,
               first_stage_minibatch_size,
               first_stage_sampler,
               first_stage_non_max_suppression_fn,
               first_stage_max_proposals,
               first_stage_localization_loss_weight,
               first_stage_objectness_loss_weight,
               crop_and_resize_fn,
               initial_crop_size,
               maxpool_kernel_size,
               maxpool_stride,
               second_stage_target_assigner,
               second_stage_mask_rcnn_box_predictor,
               second_stage_batch_size,
               second_stage_sampler,
               second_stage_non_max_suppression_fn,
               second_stage_score_conversion_fn,
               second_stage_localization_loss_weight,
               second_stage_classification_loss_weight,
               second_stage_classification_loss,
               second_stage_mask_prediction_loss_weight=1.0,
               hard_example_miner=None,
               parallel_iterations=16,
               add_summaries=True,
               clip_anchors_to_image=False,
               use_static_shapes=False,
               resize_masks=True):
    """FasterRCNNMetaArch Constructor.

    Args:
      is_training: A boolean indicating whether the training version of the
        computation graph should be constructed.
      num_classes: Number of classes.  Note that num_classes *does not*
        include the background category, so if groundtruth labels take values
        in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
        assigned classification targets can range from {0,... K}).
      image_resizer_fn: A callable for image resizing.  This callable
        takes a rank-3 image tensor of shape [height, width, channels]
        (corresponding to a single image), an optional rank-3 instance mask
        tensor of shape [num_masks, height, width] and returns a resized rank-3
        image tensor, a resized mask tensor if one was provided in the input. In
        addition this callable must also return a 1-D tensor of the form
        [height, width, channels] containing the size of the true image, as the
        image resizer can perform zero padding. See protos/image_resizer.proto.
      feature_extractor: A FasterRCNNFeatureExtractor object.
      number_of_stages:  An integer values taking values in {1, 2, 3}. If
        1, the function will construct only the Region Proposal Network (RPN)
        part of the model. If 2, the function will perform box refinement and
        other auxiliary predictions all in the second stage. If 3, it will
        extract features from refined boxes and perform the auxiliary
        predictions on the non-maximum suppressed refined boxes.
        If is_training is true and the value of number_of_stages is 3, it is
        reduced to 2 since all the model heads are trained in parallel in second
        stage during training.
      first_stage_anchor_generator: An anchor_generator.AnchorGenerator object
        (note that currently we only support
        grid_anchor_generator.GridAnchorGenerator objects)
      first_stage_target_assigner: Target assigner to use for first stage of
        Faster R-CNN (RPN).
      first_stage_atrous_rate: A single integer indicating the atrous rate for
        the single convolution op which is applied to the `rpn_features_to_crop`
        tensor to obtain a tensor to be used for box prediction. Some feature
        extractors optionally allow for producing feature maps computed at
        denser resolutions.  The atrous rate is used to compensate for the
        denser feature maps by using an effectively larger receptive field.
        (This should typically be set to 1).
      first_stage_box_predictor_arg_scope_fn: A function to construct tf-slim
        arg_scope for conv2d, separable_conv2d and fully_connected ops for the
        RPN box predictor.
      first_stage_box_predictor_kernel_size: Kernel size to use for the
        convolution op just prior to RPN box predictions.
      first_stage_box_predictor_depth: Output depth for the convolution op
        just prior to RPN box predictions.
      first_stage_minibatch_size: The "batch size" to use for computing the
        objectness and location loss of the region proposal network. This
        "batch size" refers to the number of anchors selected as contributing
        to the loss function for any given image within the image batch and is
        only called "batch_size" due to terminology from the Faster R-CNN paper.
      first_stage_sampler: Sampler to use for first stage loss (RPN loss).
      first_stage_non_max_suppression_fn: batch_multiclass_non_max_suppression
        callable that takes `boxes`, `scores` and optional `clip_window`(with
        all other inputs already set) and returns a dictionary containing
        tensors with keys: `detection_boxes`, `detection_scores`,
        `detection_classes`, `num_detections`. This is used to perform non max
        suppression  on the boxes predicted by the Region Proposal Network
        (RPN).
        See `post_processing.batch_multiclass_non_max_suppression` for the type
        and shape of these tensors.
      first_stage_max_proposals: Maximum number of boxes to retain after
        performing Non-Max Suppression (NMS) on the boxes predicted by the
        Region Proposal Network (RPN).
      first_stage_localization_loss_weight: A float
      first_stage_objectness_loss_weight: A float
      crop_and_resize_fn: A differentiable resampler to use for cropping RPN
        proposal features.
      initial_crop_size: A single integer indicating the output size
        (width and height are set to be the same) of the initial bilinear
        interpolation based cropping during ROI pooling.
      maxpool_kernel_size: A single integer indicating the kernel size of the
        max pool op on the cropped feature map during ROI pooling.
      maxpool_stride: A single integer indicating the stride of the max pool
        op on the cropped feature map during ROI pooling.
      second_stage_target_assigner: Target assigner to use for second stage of
        Faster R-CNN. If the model is configured with multiple prediction heads,
        this target assigner is used to generate targets for all heads (with the
        correct `unmatched_class_label`).
      second_stage_mask_rcnn_box_predictor: Mask R-CNN box predictor to use for
        the second stage.
      second_stage_batch_size: The batch size used for computing the
        classification and refined location loss of the box classifier.  This
        "batch size" refers to the number of proposals selected as contributing
        to the loss function for any given image within the image batch and is
        only called "batch_size" due to terminology from the Faster R-CNN paper.
      second_stage_sampler:  Sampler to use for second stage loss (box
        classifier loss).
      second_stage_non_max_suppression_fn: batch_multiclass_non_max_suppression
        callable that takes `boxes`, `scores`, optional `clip_window` and
        optional (kwarg) `mask` inputs (with all other inputs already set)
        and returns a dictionary containing tensors with keys:
        `detection_boxes`, `detection_scores`, `detection_classes`,
        `num_detections`, and (optionally) `detection_masks`. See
        `post_processing.batch_multiclass_non_max_suppression` for the type and
        shape of these tensors.
      second_stage_score_conversion_fn: Callable elementwise nonlinearity
        (that takes tensors as inputs and returns tensors).  This is usually
        used to convert logits to probabilities.
      second_stage_localization_loss_weight: A float indicating the scale factor
        for second stage localization loss.
      second_stage_classification_loss_weight: A float indicating the scale
        factor for second stage classification loss.
      second_stage_classification_loss: Classification loss used by the second
        stage classifier. Either losses.WeightedSigmoidClassificationLoss or
        losses.WeightedSoftmaxClassificationLoss.
      second_stage_mask_prediction_loss_weight: A float indicating the scale
        factor for second stage mask prediction loss. This is applicable only if
        second stage box predictor is configured to predict masks.
      hard_example_miner:  A losses.HardExampleMiner object (can be None).
      parallel_iterations: (Optional) The number of iterations allowed to run
        in parallel for calls to tf.map_fn.
      add_summaries: boolean (default: True) controlling whether summary ops
        should be added to tensorflow graph.
      clip_anchors_to_image: Normally, anchors generated for a given image size
        are pruned during training if they lie outside the image window. This
        option clips the anchors to be within the image instead of pruning.
      use_static_shapes: If True, uses implementation of ops with static shape
        guarantees.
      resize_masks: Indicates whether the masks presend in the groundtruth
        should be resized in the model with `image_resizer_fn`

    Raises:
      ValueError: If `second_stage_batch_size` > `first_stage_max_proposals` at
        training time.
      ValueError: If first_stage_anchor_generator is not of type
        grid_anchor_generator.GridAnchorGenerator.
    """
    # TODO(rathodv): add_summaries is currently unused. Respect that directive
    # in the future.
    super(FasterRCNNMetaArch, self).__init__(num_classes=num_classes)

    if not isinstance(first_stage_anchor_generator,
                      grid_anchor_generator.GridAnchorGenerator):
      raise ValueError('first_stage_anchor_generator must be of type '
                       'grid_anchor_generator.GridAnchorGenerator.')

    self._is_training = is_training
    self._image_resizer_fn = image_resizer_fn
    self._resize_masks = resize_masks
    self._feature_extractor = feature_extractor
    self._number_of_stages = number_of_stages

    self._proposal_target_assigner = first_stage_target_assigner
    self._detector_target_assigner = second_stage_target_assigner
    # Both proposal and detector target assigners use the same box coder
    self._box_coder = self._proposal_target_assigner.box_coder

    # (First stage) Region proposal network parameters
    self._first_stage_anchor_generator = first_stage_anchor_generator
    self._first_stage_atrous_rate = first_stage_atrous_rate
    self._first_stage_box_predictor_arg_scope_fn = (
        first_stage_box_predictor_arg_scope_fn)
    self._first_stage_box_predictor_kernel_size = (
        first_stage_box_predictor_kernel_size)
    self._first_stage_box_predictor_depth = first_stage_box_predictor_depth
    self._first_stage_minibatch_size = first_stage_minibatch_size
    self._first_stage_sampler = first_stage_sampler
    self._first_stage_box_predictor = (
        box_predictor_builder.build_convolutional_box_predictor(
            is_training=self._is_training,
            num_classes=1,
            conv_hyperparams_fn=self._first_stage_box_predictor_arg_scope_fn,
            use_dropout=False,
            dropout_keep_prob=1.0,
            box_code_size=self._box_coder.code_size,
            kernel_size=1,
            num_layers_before_predictor=0,
            min_depth=0,
            max_depth=0))

    self._first_stage_nms_fn = first_stage_non_max_suppression_fn
    self._first_stage_max_proposals = first_stage_max_proposals
    self._use_static_shapes = use_static_shapes

    self._first_stage_localization_loss = (
        losses.WeightedSmoothL1LocalizationLoss())
    self._first_stage_objectness_loss = (
        losses.WeightedSoftmaxClassificationLoss())
    self._first_stage_loc_loss_weight = first_stage_localization_loss_weight
    self._first_stage_obj_loss_weight = first_stage_objectness_loss_weight

    # Per-region cropping parameters
    self._crop_and_resize_fn = crop_and_resize_fn
    self._initial_crop_size = initial_crop_size
    self._maxpool_kernel_size = maxpool_kernel_size
    self._maxpool_stride = maxpool_stride

    self._mask_rcnn_box_predictor = second_stage_mask_rcnn_box_predictor

    self._second_stage_batch_size = second_stage_batch_size
    self._second_stage_sampler = second_stage_sampler

    self._second_stage_nms_fn = second_stage_non_max_suppression_fn
    self._second_stage_score_conversion_fn = second_stage_score_conversion_fn

    self._second_stage_localization_loss = (
        losses.WeightedSmoothL1LocalizationLoss())
    self._second_stage_classification_loss = second_stage_classification_loss
    self._second_stage_mask_loss = (
        losses.WeightedSigmoidClassificationLoss())
    self._second_stage_loc_loss_weight = second_stage_localization_loss_weight
    self._second_stage_cls_loss_weight = second_stage_classification_loss_weight
    self._second_stage_mask_loss_weight = (
        second_stage_mask_prediction_loss_weight)
    self._hard_example_miner = hard_example_miner
    self._parallel_iterations = parallel_iterations

    self.clip_anchors_to_image = clip_anchors_to_image

    if self._number_of_stages <= 0 or self._number_of_stages > 3:
      raise ValueError('Number of stages should be a value in {1, 2, 3}.')

  @property
  def first_stage_feature_extractor_scope(self):
    return 'FirstStageFeatureExtractor'

  @property
  def second_stage_feature_extractor_scope(self):
    return 'SecondStageFeatureExtractor'

  @property
  def first_stage_box_predictor_scope(self):
    return 'FirstStageBoxPredictor'

  @property
  def second_stage_box_predictor_scope(self):
    return 'SecondStageBoxPredictor'

  @property
  def max_num_proposals(self):
    """Max number of proposals (to pad to) for each image in the input batch.

    At training time, this is set to be the `second_stage_batch_size` if hard
    example miner is not configured, else it is set to
    `first_stage_max_proposals`. At inference time, this is always set to
    `first_stage_max_proposals`.

    Returns:
      A positive integer.
    """
    if self._is_training and not self._hard_example_miner:
      return self._second_stage_batch_size
    return self._first_stage_max_proposals

  @property
  def anchors(self):
    if not self._anchors:
      raise RuntimeError('anchors have not been constructed yet!')
    if not isinstance(self._anchors, box_list.BoxList):
      raise RuntimeError('anchors should be a BoxList object, but is not.')
    return self._anchors

  def preprocess(self, inputs):
    """Feature-extractor specific preprocessing.

    See base class.

    For Faster R-CNN, we perform image resizing in the base class --- each
    class subclassing FasterRCNNMetaArch is responsible for any additional
    preprocessing (e.g., scaling pixel values to be in [-1, 1]).

    Args:
      inputs: a [batch, height_in, width_in, channels] float tensor representing
        a batch of images with values between 0 and 255.0.

    Returns:
      preprocessed_inputs: a [batch, height_out, width_out, channels] float
        tensor representing a batch of images.
      true_image_shapes: int32 tensor of shape [batch, 3] where each row is
        of the form [height, width, channels] indicating the shapes
        of true images in the resized images, as resized images can be padded
        with zeros.
    Raises:
      ValueError: if inputs tensor does not have type tf.float32
    """
    if inputs.dtype is not tf.float32:
      raise ValueError('`preprocess` expects a tf.float32 tensor')
    with tf.name_scope('Preprocessor'):
      outputs = shape_utils.static_or_dynamic_map_fn(
          self._image_resizer_fn,
          elems=inputs,
          dtype=[tf.float32, tf.int32],
          parallel_iterations=self._parallel_iterations)
      resized_inputs = outputs[0]
      true_image_shapes = outputs[1]
      return (self._feature_extractor.preprocess(resized_inputs),
              true_image_shapes)

  def _compute_clip_window(self, image_shapes):
    """Computes clip window for non max suppression based on image shapes.

    This function assumes that the clip window's left top corner is at (0, 0).

    Args:
      image_shapes: A 2-D int32 tensor of shape [batch_size, 3] containing
      shapes of images in the batch. Each row represents [height, width,
      channels] of an image.

    Returns:
      A 2-D float32 tensor of shape [batch_size, 4] containing the clip window
      for each image in the form [ymin, xmin, ymax, xmax].
    """
    clip_heights = image_shapes[:, 0]
    clip_widths = image_shapes[:, 1]
    clip_window = tf.to_float(tf.stack([tf.zeros_like(clip_heights),
                                        tf.zeros_like(clip_heights),
                                        clip_heights, clip_widths], axis=1))
    return clip_window

  def predict(self, preprocessed_inputs, true_image_shapes):
    """Predicts unpostprocessed tensors from input tensor.

    This function takes an input batch of images and runs it through the
    forward pass of the network to yield "raw" un-postprocessed predictions.
    If `number_of_stages` is 1, this function only returns first stage
    RPN predictions (un-postprocessed).  Otherwise it returns both
    first stage RPN predictions as well as second stage box classifier
    predictions.

    Other remarks:
    + Anchor pruning vs. clipping: following the recommendation of the Faster
    R-CNN paper, we prune anchors that venture outside the image window at
    training time and clip anchors to the image window at inference time.
    + Proposal padding: as described at the top of the file, proposals are
    padded to self._max_num_proposals and flattened so that proposals from all
    images within the input batch are arranged along the same batch dimension.

    Args:
      preprocessed_inputs: a [batch, height, width, channels] float tensor
        representing a batch of images.
      true_image_shapes: int32 tensor of shape [batch, 3] where each row is
        of the form [height, width, channels] indicating the shapes
        of true images in the resized images, as resized images can be padded
        with zeros.

    Returns:
      prediction_dict: a dictionary holding "raw" prediction tensors:
        1) rpn_box_predictor_features: A 4-D float32 tensor with shape
          [batch_size, height, width, depth] to be used for predicting proposal
          boxes and corresponding objectness scores.
        2) rpn_features_to_crop: A 4-D float32 tensor with shape
          [batch_size, height, width, depth] representing image features to crop
          using the proposal boxes predicted by the RPN.
        3) image_shape: a 1-D tensor of shape [4] representing the input
          image shape.
        4) rpn_box_encodings:  3-D float tensor of shape
          [batch_size, num_anchors, self._box_coder.code_size] containing
          predicted boxes.
        5) rpn_objectness_predictions_with_background: 3-D float tensor of shape
          [batch_size, num_anchors, 2] containing class
          predictions (logits) for each of the anchors.  Note that this
          tensor *includes* background class predictions (at class index 0).
        6) anchors: A 2-D tensor of shape [num_anchors, 4] representing anchors
          for the first stage RPN (in absolute coordinates).  Note that
          `num_anchors` can differ depending on whether the model is created in
          training or inference mode.

        (and if number_of_stages > 1):
        7) refined_box_encodings: a 3-D tensor with shape
          [total_num_proposals, num_classes, self._box_coder.code_size]
          representing predicted (final) refined box encodings, where
          total_num_proposals=batch_size*self._max_num_proposals. If using
          a shared box across classes the shape will instead be
          [total_num_proposals, 1, self._box_coder.code_size].
        8) class_predictions_with_background: a 3-D tensor with shape
          [total_num_proposals, num_classes + 1] containing class
          predictions (logits) for each of the anchors, where
          total_num_proposals=batch_size*self._max_num_proposals.
          Note that this tensor *includes* background class predictions
          (at class index 0).
        9) num_proposals: An int32 tensor of shape [batch_size] representing the
          number of proposals generated by the RPN.  `num_proposals` allows us
          to keep track of which entries are to be treated as zero paddings and
          which are not since we always pad the number of proposals to be
          `self.max_num_proposals` for each image.
        10) proposal_boxes: A float32 tensor of shape
          [batch_size, self.max_num_proposals, 4] representing
          decoded proposal bounding boxes in absolute coordinates.
        11) mask_predictions: (optional) a 4-D tensor with shape
          [total_num_padded_proposals, num_classes, mask_height, mask_width]
          containing instance mask predictions.

    Raises:
      ValueError: If `predict` is called before `preprocess`.
    """
    (rpn_box_predictor_features, rpn_features_to_crop, anchors_boxlist,
     image_shape) = self._extract_rpn_feature_maps(preprocessed_inputs)
    (rpn_box_encodings, rpn_objectness_predictions_with_background
    ) = self._predict_rpn_proposals(rpn_box_predictor_features)

    # The Faster R-CNN paper recommends pruning anchors that venture outside
    # the image window at training time and clipping at inference time.
    clip_window = tf.to_float(tf.stack([0, 0, image_shape[1], image_shape[2]]))
    if self._is_training:
      if self.clip_anchors_to_image:
        anchors_boxlist = box_list_ops.clip_to_window(
            anchors_boxlist, clip_window, filter_nonoverlapping=False)
      else:
        (rpn_box_encodings, rpn_objectness_predictions_with_background,
         anchors_boxlist) = self._remove_invalid_anchors_and_predictions(
             rpn_box_encodings, rpn_objectness_predictions_with_background,
             anchors_boxlist, clip_window)
    else:
      anchors_boxlist = box_list_ops.clip_to_window(
          anchors_boxlist, clip_window,
          filter_nonoverlapping=not self._use_static_shapes)

    self._anchors = anchors_boxlist
    prediction_dict = {
        'rpn_box_predictor_features': rpn_box_predictor_features,
        'rpn_features_to_crop': rpn_features_to_crop,
        'image_shape': image_shape,
        'rpn_box_encodings': rpn_box_encodings,
        'rpn_objectness_predictions_with_background':
        rpn_objectness_predictions_with_background,
        'anchors': self._anchors.get()
    }

    if self._number_of_stages >= 2:
      # If mixed-precision training on TPU is enabled, rpn_box_encodings and
      # rpn_objectness_predictions_with_background are bfloat16 tensors.
      # Considered prediction results, they need to be casted to float32
      # tensors for correct postprocess_rpn computation in predict_second_stage.
      prediction_dict.update(self._predict_second_stage(
          tf.to_float(rpn_box_encodings),
          tf.to_float(rpn_objectness_predictions_with_background),
          rpn_features_to_crop,
          self._anchors.get(), image_shape, true_image_shapes))

    if self._number_of_stages == 3:
      prediction_dict = self._predict_third_stage(
          prediction_dict, true_image_shapes)

    return prediction_dict

  def _image_batch_shape_2d(self, image_batch_shape_1d):
    """Takes a 1-D image batch shape tensor and converts it to a 2-D tensor.

    Example:
    If 1-D image batch shape tensor is [2, 300, 300, 3]. The corresponding 2-D
    image batch tensor would be [[300, 300, 3], [300, 300, 3]]

    Args:
      image_batch_shape_1d: 1-D tensor of the form [batch_size, height,
        width, channels].

    Returns:
      image_batch_shape_2d: 2-D tensor of shape [batch_size, 3] were each row is
        of the form [height, width, channels].
    """
    return tf.tile(tf.expand_dims(image_batch_shape_1d[1:], 0),
                   [image_batch_shape_1d[0], 1])

  def _predict_second_stage(self, rpn_box_encodings,
                            rpn_objectness_predictions_with_background,
                            rpn_features_to_crop,
                            anchors,
                            image_shape,
                            true_image_shapes):
    """Predicts the output tensors from second stage of Faster R-CNN.

    Args:
      rpn_box_encodings: 4-D float tensor of shape
        [batch_size, num_valid_anchors, self._box_coder.code_size] containing
        predicted boxes.
      rpn_objectness_predictions_with_background: 2-D float tensor of shape
        [batch_size, num_valid_anchors, 2] containing class
        predictions (logits) for each of the anchors.  Note that this
        tensor *includes* background class predictions (at class index 0).
      rpn_features_to_crop: A 4-D float32 or bfloat16 tensor with shape
        [batch_size, height, width, depth] representing image features to crop
        using the proposal boxes predicted by the RPN.
      anchors: 2-D float tensor of shape
        [num_anchors, self._box_coder.code_size].
      image_shape: A 1D int32 tensors of size [4] containing the image shape.
      true_image_shapes: int32 tensor of shape [batch, 3] where each row is
        of the form [height, width, channels] indicating the shapes
        of true images in the resized images, as resized images can be padded
        with zeros.

    Returns:
      prediction_dict: a dictionary holding "raw" prediction tensors:
        1) refined_box_encodings: a 3-D tensor with shape
          [total_num_proposals, num_classes, self._box_coder.code_size]
          representing predicted (final) refined box encodings, where
          total_num_proposals=batch_size*self._max_num_proposals. If using a
          shared box across classes the shape will instead be
          [total_num_proposals, 1, self._box_coder.code_size].
        2) class_predictions_with_background: a 3-D tensor with shape
          [total_num_proposals, num_classes + 1] containing class
          predictions (logits) for each of the anchors, where
          total_num_proposals=batch_size*self._max_num_proposals.
          Note that this tensor *includes* background class predictions
          (at class index 0).
        3) num_proposals: An int32 tensor of shape [batch_size] representing the
          number of proposals generated by the RPN.  `num_proposals` allows us
          to keep track of which entries are to be treated as zero paddings and
          which are not since we always pad the number of proposals to be
          `self.max_num_proposals` for each image.
        4) proposal_boxes: A float32 tensor of shape
          [batch_size, self.max_num_proposals, 4] representing
          decoded proposal bounding boxes in absolute coordinates.
        5) proposal_boxes_normalized: A float32 tensor of shape
          [batch_size, self.max_num_proposals, 4] representing decoded proposal
          bounding boxes in normalized coordinates. Can be used to override the
          boxes proposed by the RPN, thus enabling one to extract features and
          get box classification and prediction for externally selected areas
          of the image.
        6) box_classifier_features: a 4-D float32 or bfloat16 tensor
          representing the features for each proposal.
    """
    image_shape_2d = self._image_batch_shape_2d(image_shape)
    proposal_boxes_normalized, _, num_proposals, _, _ = self._postprocess_rpn(
        rpn_box_encodings, rpn_objectness_predictions_with_background,
        anchors, image_shape_2d, true_image_shapes)

    # If mixed-precision training on TPU is enabled, the dtype of
    # rpn_features_to_crop is bfloat16, otherwise it is float32. tf.cast is
    # used to match the dtype of proposal_boxes_normalized to that of
    # rpn_features_to_crop for further computation.
    flattened_proposal_feature_maps = (
        self._compute_second_stage_input_feature_maps(
            rpn_features_to_crop,
            tf.cast(proposal_boxes_normalized, rpn_features_to_crop.dtype)))

    box_classifier_features = (
        self._feature_extractor.extract_box_classifier_features(
            flattened_proposal_feature_maps,
            scope=self.second_stage_feature_extractor_scope))

    if self._mask_rcnn_box_predictor.is_keras_model:
      box_predictions = self._mask_rcnn_box_predictor(
          [box_classifier_features],
          prediction_stage=2)
    else:
      box_predictions = self._mask_rcnn_box_predictor.predict(
          [box_classifier_features],
          num_predictions_per_location=[1],
          scope=self.second_stage_box_predictor_scope,
          prediction_stage=2)

    refined_box_encodings = tf.squeeze(
        box_predictions[box_predictor.BOX_ENCODINGS],
        axis=1, name='all_refined_box_encodings')
    class_predictions_with_background = tf.squeeze(
        box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND],
        axis=1, name='all_class_predictions_with_background')

    absolute_proposal_boxes = ops.normalized_to_image_coordinates(
        proposal_boxes_normalized, image_shape, self._parallel_iterations)

    prediction_dict = {
        'refined_box_encodings': refined_box_encodings,
        'class_predictions_with_background':
        class_predictions_with_background,
        'num_proposals': num_proposals,
        'proposal_boxes': absolute_proposal_boxes,
        'box_classifier_features': box_classifier_features,
        'proposal_boxes_normalized': proposal_boxes_normalized,
    }

    return prediction_dict

  def _predict_third_stage(self, prediction_dict, image_shapes):
    """Predicts non-box, non-class outputs using refined detections.

    For training, masks as predicted directly on the box_classifier_features,
    which are region-features from the initial anchor boxes.
    For inference, this happens after calling the post-processing stage, such
    that masks are only calculated for the top scored boxes.

    Args:
     prediction_dict: a dictionary holding "raw" prediction tensors:
        1) refined_box_encodings: a 3-D tensor with shape
          [total_num_proposals, num_classes, self._box_coder.code_size]
          representing predicted (final) refined box encodings, where
          total_num_proposals=batch_size*self._max_num_proposals. If using a
          shared box across classes the shape will instead be
          [total_num_proposals, 1, self._box_coder.code_size].
        2) class_predictions_with_background: a 3-D tensor with shape
          [total_num_proposals, num_classes + 1] containing class
          predictions (logits) for each of the anchors, where
          total_num_proposals=batch_size*self._max_num_proposals.
          Note that this tensor *includes* background class predictions
          (at class index 0).
        3) num_proposals: An int32 tensor of shape [batch_size] representing the
          number of proposals generated by the RPN.  `num_proposals` allows us
          to keep track of which entries are to be treated as zero paddings and
          which are not since we always pad the number of proposals to be
          `self.max_num_proposals` for each image.
        4) proposal_boxes: A float32 tensor of shape
          [batch_size, self.max_num_proposals, 4] representing
          decoded proposal bounding boxes in absolute coordinates.
        5) box_classifier_features: a 4-D float32 tensor representing the
          features for each proposal.
      image_shapes: A 2-D int32 tensors of shape [batch_size, 3] containing
        shapes of images in the batch.

    Returns:
      prediction_dict: a dictionary that in addition to the input predictions
      does hold the following predictions as well:
        1) mask_predictions: a 4-D tensor with shape
          [batch_size, max_detection, mask_height, mask_width] containing
          instance mask predictions.
    """
    if self._is_training:
      curr_box_classifier_features = prediction_dict['box_classifier_features']
      detection_classes = prediction_dict['class_predictions_with_background']
      if self._mask_rcnn_box_predictor.is_keras_model:
        mask_predictions = self._mask_rcnn_box_predictor(
            [curr_box_classifier_features],
            prediction_stage=3)
      else:
        mask_predictions = self._mask_rcnn_box_predictor.predict(
            [curr_box_classifier_features],
            num_predictions_per_location=[1],
            scope=self.second_stage_box_predictor_scope,
            prediction_stage=3)
      prediction_dict['mask_predictions'] = tf.squeeze(mask_predictions[
          box_predictor.MASK_PREDICTIONS], axis=1)
    else:
      detections_dict = self._postprocess_box_classifier(
          prediction_dict['refined_box_encodings'],
          prediction_dict['class_predictions_with_background'],
          prediction_dict['proposal_boxes'],
          prediction_dict['num_proposals'],
          image_shapes)
      prediction_dict.update(detections_dict)
      detection_boxes = detections_dict[
          fields.DetectionResultFields.detection_boxes]
      detection_classes = detections_dict[
          fields.DetectionResultFields.detection_classes]
      rpn_features_to_crop = prediction_dict['rpn_features_to_crop']
      batch_size = tf.shape(detection_boxes)[0]
      max_detection = tf.shape(detection_boxes)[1]
      flattened_detected_feature_maps = (
          self._compute_second_stage_input_feature_maps(
              rpn_features_to_crop, detection_boxes))
      curr_box_classifier_features = (
          self._feature_extractor.extract_box_classifier_features(
              flattened_detected_feature_maps,
              scope=self.second_stage_feature_extractor_scope))

      if self._mask_rcnn_box_predictor.is_keras_model:
        mask_predictions = self._mask_rcnn_box_predictor(
            [curr_box_classifier_features],
            prediction_stage=3)
      else:
        mask_predictions = self._mask_rcnn_box_predictor.predict(
            [curr_box_classifier_features],
            num_predictions_per_location=[1],
            scope=self.second_stage_box_predictor_scope,
            prediction_stage=3)

      detection_masks = tf.squeeze(mask_predictions[
          box_predictor.MASK_PREDICTIONS], axis=1)

      _, num_classes, mask_height, mask_width = (
          detection_masks.get_shape().as_list())
      _, max_detection = detection_classes.get_shape().as_list()
      prediction_dict['mask_predictions'] = tf.reshape(
          detection_masks, [-1, num_classes, mask_height, mask_width])
      if num_classes > 1:
        detection_masks = self._gather_instance_masks(
            detection_masks, detection_classes)

      prediction_dict[fields.DetectionResultFields.detection_masks] = (
          tf.reshape(tf.sigmoid(detection_masks),
                     [batch_size, max_detection, mask_height, mask_width]))

    return prediction_dict

  def _gather_instance_masks(self, instance_masks, classes):
    """Gathers the masks that correspond to classes.

    Args:
      instance_masks: A 4-D float32 tensor with shape
        [K, num_classes, mask_height, mask_width].
      classes: A 2-D int32 tensor with shape [batch_size, max_detection].

    Returns:
      masks: a 3-D float32 tensor with shape [K, mask_height, mask_width].
    """
    _, num_classes, height, width = instance_masks.get_shape().as_list()
    k = tf.shape(instance_masks)[0]
    instance_masks = tf.reshape(instance_masks, [-1, height, width])
    classes = tf.to_int32(tf.reshape(classes, [-1]))
    gather_idx = tf.range(k) * num_classes + classes
    return tf.gather(instance_masks, gather_idx)

  def _extract_rpn_feature_maps(self, preprocessed_inputs):
    """Extracts RPN features.

    This function extracts two feature maps: a feature map to be directly
    fed to a box predictor (to predict location and objectness scores for
    proposals) and a feature map from which to crop regions which will then
    be sent to the second stage box classifier.

    Args:
      preprocessed_inputs: a [batch, height, width, channels] image tensor.

    Returns:
      rpn_box_predictor_features: A 4-D float32 tensor with shape
        [batch, height, width, depth] to be used for predicting proposal boxes
        and corresponding objectness scores.
      rpn_features_to_crop: A 4-D float32 tensor with shape
        [batch, height, width, depth] representing image features to crop using
        the proposals boxes.
      anchors: A BoxList representing anchors (for the RPN) in
        absolute coordinates.
      image_shape: A 1-D tensor representing the input image shape.
    """
    image_shape = tf.shape(preprocessed_inputs)

    rpn_features_to_crop, self.endpoints = (
        self._feature_extractor.extract_proposal_features(
            preprocessed_inputs,
            scope=self.first_stage_feature_extractor_scope))

    feature_map_shape = tf.shape(rpn_features_to_crop)
    anchors = box_list_ops.concatenate(
        self._first_stage_anchor_generator.generate([(feature_map_shape[1],
                                                      feature_map_shape[2])]))
    with slim.arg_scope(self._first_stage_box_predictor_arg_scope_fn()):
      kernel_size = self._first_stage_box_predictor_kernel_size
      reuse = tf.get_variable_scope().reuse
      rpn_box_predictor_features = slim.conv2d(
          rpn_features_to_crop,
          self._first_stage_box_predictor_depth,
          kernel_size=[kernel_size, kernel_size],
          rate=self._first_stage_atrous_rate,
          activation_fn=tf.nn.relu6,
          scope='Conv',
          reuse=reuse)
    return (rpn_box_predictor_features, rpn_features_to_crop,
            anchors, image_shape)

  def _predict_rpn_proposals(self, rpn_box_predictor_features):
    """Adds box predictors to RPN feature map to predict proposals.

    Note resulting tensors will not have been postprocessed.

    Args:
      rpn_box_predictor_features: A 4-D float32 tensor with shape
        [batch, height, width, depth] to be used for predicting proposal boxes
        and corresponding objectness scores.

    Returns:
      box_encodings: 3-D float tensor of shape
        [batch_size, num_anchors, self._box_coder.code_size] containing
        predicted boxes.
      objectness_predictions_with_background: 3-D float tensor of shape
        [batch_size, num_anchors, 2] containing class
        predictions (logits) for each of the anchors.  Note that this
        tensor *includes* background class predictions (at class index 0).

    Raises:
      RuntimeError: if the anchor generator generates anchors corresponding to
        multiple feature maps.  We currently assume that a single feature map
        is generated for the RPN.
    """
    num_anchors_per_location = (
        self._first_stage_anchor_generator.num_anchors_per_location())
    if len(num_anchors_per_location) != 1:
      raise RuntimeError('anchor_generator is expected to generate anchors '
                         'corresponding to a single feature map.')
    if self._first_stage_box_predictor.is_keras_model:
      box_predictions = self._first_stage_box_predictor(
          [rpn_box_predictor_features])
    else:
      box_predictions = self._first_stage_box_predictor.predict(
          [rpn_box_predictor_features],
          num_anchors_per_location,
          scope=self.first_stage_box_predictor_scope)

    box_encodings = tf.concat(
        box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
    objectness_predictions_with_background = tf.concat(
        box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND],
        axis=1)
    return (tf.squeeze(box_encodings, axis=2),
            objectness_predictions_with_background)

  def _remove_invalid_anchors_and_predictions(
      self,
      box_encodings,
      objectness_predictions_with_background,
      anchors_boxlist,
      clip_window):
    """Removes anchors that (partially) fall outside an image.

    Also removes associated box encodings and objectness predictions.

    Args:
      box_encodings: 3-D float tensor of shape
        [batch_size, num_anchors, self._box_coder.code_size] containing
        predicted boxes.
      objectness_predictions_with_background: 3-D float tensor of shape
        [batch_size, num_anchors, 2] containing class
        predictions (logits) for each of the anchors.  Note that this
        tensor *includes* background class predictions (at class index 0).
      anchors_boxlist: A BoxList representing num_anchors anchors (for the RPN)
        in absolute coordinates.
      clip_window: a 1-D tensor representing the [ymin, xmin, ymax, xmax]
        extent of the window to clip/prune to.

    Returns:
      box_encodings: 4-D float tensor of shape
        [batch_size, num_valid_anchors, self._box_coder.code_size] containing
        predicted boxes, where num_valid_anchors <= num_anchors
      objectness_predictions_with_background: 2-D float tensor of shape
        [batch_size, num_valid_anchors, 2] containing class
        predictions (logits) for each of the anchors, where
        num_valid_anchors <= num_anchors.  Note that this
        tensor *includes* background class predictions (at class index 0).
      anchors: A BoxList representing num_valid_anchors anchors (for the RPN) in
        absolute coordinates.
    """
    pruned_anchors_boxlist, keep_indices = box_list_ops.prune_outside_window(
        anchors_boxlist, clip_window)
    def _batch_gather_kept_indices(predictions_tensor):
      return shape_utils.static_or_dynamic_map_fn(
          functools.partial(tf.gather, indices=keep_indices),
          elems=predictions_tensor,
          dtype=tf.float32,
          parallel_iterations=self._parallel_iterations,
          back_prop=True)
    return (_batch_gather_kept_indices(box_encodings),
            _batch_gather_kept_indices(objectness_predictions_with_background),
            pruned_anchors_boxlist)

  def _flatten_first_two_dimensions(self, inputs):
    """Flattens `K-d` tensor along batch dimension to be a `(K-1)-d` tensor.

    Converts `inputs` with shape [A, B, ..., depth] into a tensor of shape
    [A * B, ..., depth].

    Args:
      inputs: A float tensor with shape [A, B, ..., depth].  Note that the first
        two and last dimensions must be statically defined.
    Returns:
      A float tensor with shape [A * B, ..., depth] (where the first and last
        dimension are statically defined.
    """
    combined_shape = shape_utils.combined_static_and_dynamic_shape(inputs)
    flattened_shape = tf.stack([combined_shape[0] * combined_shape[1]] +
                               combined_shape[2:])
    return tf.reshape(inputs, flattened_shape)

  def postprocess(self, prediction_dict, true_image_shapes):
    """Convert prediction tensors to final detections.

    This function converts raw predictions tensors to final detection results.
    See base class for output format conventions.  Note also that by default,
    scores are to be interpreted as logits, but if a score_converter is used,
    then scores are remapped (and may thus have a different interpretation).

    If number_of_stages=1, the returned results represent proposals from the
    first stage RPN and are padded to have self.max_num_proposals for each
    image; otherwise, the results can be interpreted as multiclass detections
    from the full two-stage model and are padded to self._max_detections.

    Args:
      prediction_dict: a dictionary holding prediction tensors (see the
        documentation for the predict method.  If number_of_stages=1, we
        expect prediction_dict to contain `rpn_box_encodings`,
        `rpn_objectness_predictions_with_background`, `rpn_features_to_crop`,
        and `anchors` fields.  Otherwise we expect prediction_dict to
        additionally contain `refined_box_encodings`,
        `class_predictions_with_background`, `num_proposals`,
        `proposal_boxes` and, optionally, `mask_predictions` fields.
      true_image_shapes: int32 tensor of shape [batch, 3] where each row is
        of the form [height, width, channels] indicating the shapes
        of true images in the resized images, as resized images can be padded
        with zeros.

    Returns:
      detections: a dictionary containing the following fields
        detection_boxes: [batch, max_detection, 4]
        detection_scores: [batch, max_detections]
        detection_classes: [batch, max_detections]
          (this entry is only created if rpn_mode=False)
        num_detections: [batch]

    Raises:
      ValueError: If `predict` is called before `preprocess`.
    """

    with tf.name_scope('FirstStagePostprocessor'):
      if self._number_of_stages == 1:
        (proposal_boxes, proposal_scores, num_proposals, raw_proposal_boxes,
         raw_proposal_scores) = self._postprocess_rpn(
             prediction_dict['rpn_box_encodings'],
             prediction_dict['rpn_objectness_predictions_with_background'],
             prediction_dict['anchors'], true_image_shapes, true_image_shapes)
        return {
            fields.DetectionResultFields.detection_boxes:
                proposal_boxes,
            fields.DetectionResultFields.detection_scores:
                proposal_scores,
            fields.DetectionResultFields.num_detections:
                tf.to_float(num_proposals),
            fields.DetectionResultFields.raw_detection_boxes:
                raw_proposal_boxes,
            fields.DetectionResultFields.raw_detection_scores:
                raw_proposal_scores
        }

    # TODO(jrru): Remove mask_predictions from _post_process_box_classifier.
    if (self._number_of_stages == 2 or
        (self._number_of_stages == 3 and self._is_training)):
      with tf.name_scope('SecondStagePostprocessor'):
        mask_predictions = prediction_dict.get(box_predictor.MASK_PREDICTIONS)
        detections_dict = self._postprocess_box_classifier(
            prediction_dict['refined_box_encodings'],
            prediction_dict['class_predictions_with_background'],
            prediction_dict['proposal_boxes'],
            prediction_dict['num_proposals'],
            true_image_shapes,
            mask_predictions=mask_predictions)

      if 'rpn_features_to_crop' in prediction_dict and self._initial_crop_size:
        self._add_detection_features_output_node(
            detections_dict[fields.DetectionResultFields.detection_boxes],
            prediction_dict['rpn_features_to_crop'])

      return detections_dict

    if self._number_of_stages == 3:
      # Post processing is already performed in 3rd stage. We need to transfer
      # postprocessed tensors from `prediction_dict` to `detections_dict`.
      return prediction_dict

  def _add_detection_features_output_node(self, detection_boxes,
                                          rpn_features_to_crop):
    """Add the detection features to the output node.

    The detection features are from cropping rpn_features with boxes.
    Each bounding box has one feature vector of length depth, which comes from
    mean_pooling of the cropped rpn_features.

    Args:
      detection_boxes: a 3-D float32 tensor of shape
        [batch_size, max_detection, 4] which represents the bounding boxes.
      rpn_features_to_crop: A 4-D float32 tensor with shape
        [batch, height, width, depth] representing image features to crop using
        the proposals boxes.
    """
    with tf.name_scope('SecondStageDetectionFeaturesExtract'):
      flattened_detected_feature_maps = (
          self._compute_second_stage_input_feature_maps(
              rpn_features_to_crop, detection_boxes))
      detection_features_unpooled = (
          self._feature_extractor.extract_box_classifier_features(
              flattened_detected_feature_maps,
              scope=self.second_stage_feature_extractor_scope))

      batch_size = tf.shape(detection_boxes)[0]
      max_detection = tf.shape(detection_boxes)[1]
      detection_features_pool = tf.reduce_mean(
          detection_features_unpooled, axis=[1, 2])
      detection_features = tf.reshape(
          detection_features_pool,
          [batch_size, max_detection, tf.shape(detection_features_pool)[-1]])

    detection_features = tf.identity(
        detection_features, 'detection_features')

  def _postprocess_rpn(self,
                       rpn_box_encodings_batch,
                       rpn_objectness_predictions_with_background_batch,
                       anchors,
                       image_shapes,
                       true_image_shapes):
    """Converts first stage prediction tensors from the RPN to proposals.

    This function decodes the raw RPN predictions, runs non-max suppression
    on the result.

    Note that the behavior of this function is slightly modified during
    training --- specifically, we stop the gradient from passing through the
    proposal boxes and we only return a balanced sampled subset of proposals
    with size `second_stage_batch_size`.

    Args:
      rpn_box_encodings_batch: A 3-D float32 tensor of shape
        [batch_size, num_anchors, self._box_coder.code_size] containing
        predicted proposal box encodings.
      rpn_objectness_predictions_with_background_batch: A 3-D float tensor of
        shape [batch_size, num_anchors, 2] containing objectness predictions
        (logits) for each of the anchors with 0 corresponding to background
        and 1 corresponding to object.
      anchors: A 2-D tensor of shape [num_anchors, 4] representing anchors
        for the first stage RPN.  Note that `num_anchors` can differ depending
        on whether the model is created in training or inference mode.
      image_shapes: A 2-D tensor of shape [batch, 3] containing the shapes of
        images in the batch.
      true_image_shapes: int32 tensor of shape [batch, 3] where each row is
        of the form [height, width, channels] indicating the shapes
        of true images in the resized images, as resized images can be padded
        with zeros.

    Returns:
      proposal_boxes: A float tensor with shape
        [batch_size, max_num_proposals, 4] representing the (potentially zero
        padded) proposal boxes for all images in the batch.  These boxes are
        represented as normalized coordinates.
      proposal_scores:  A float tensor with shape
        [batch_size, max_num_proposals] representing the (potentially zero
        padded) proposal objectness scores for all images in the batch.
      num_proposals: A Tensor of type `int32`. A 1-D tensor of shape [batch]
        representing the number of proposals predicted for each image in
        the batch.
      raw_detection_boxes: [batch, total_detections, 4] tensor with decoded
        proposal boxes before Non-Max Suppression.
      raw_detection_score: [batch, total_detections,
        num_classes_with_background] tensor of class score logits for
        raw proposal boxes.
    """
    rpn_box_encodings_batch = tf.expand_dims(rpn_box_encodings_batch, axis=2)
    rpn_encodings_shape = shape_utils.combined_static_and_dynamic_shape(
        rpn_box_encodings_batch)
    tiled_anchor_boxes = tf.tile(
        tf.expand_dims(anchors, 0), [rpn_encodings_shape[0], 1, 1])
    proposal_boxes = self._batch_decode_boxes(rpn_box_encodings_batch,
                                              tiled_anchor_boxes)
    raw_proposal_boxes = tf.squeeze(proposal_boxes, axis=2)
    rpn_objectness_softmax_without_background = tf.nn.softmax(
        rpn_objectness_predictions_with_background_batch)[:, :, 1]
    clip_window = self._compute_clip_window(image_shapes)
    (proposal_boxes, proposal_scores, _, _, _,
     num_proposals) = self._first_stage_nms_fn(
         tf.expand_dims(raw_proposal_boxes, axis=2),
         tf.expand_dims(rpn_objectness_softmax_without_background, axis=2),
         clip_window=clip_window)
    if self._is_training:
      proposal_boxes = tf.stop_gradient(proposal_boxes)
      if not self._hard_example_miner:
        (groundtruth_boxlists, groundtruth_classes_with_background_list, _,
         groundtruth_weights_list
        ) = self._format_groundtruth_data(true_image_shapes)
        (proposal_boxes, proposal_scores,
         num_proposals) = self._sample_box_classifier_batch(
             proposal_boxes, proposal_scores, num_proposals,
             groundtruth_boxlists, groundtruth_classes_with_background_list,
             groundtruth_weights_list)
    # normalize proposal boxes
    def normalize_boxes(args):
      proposal_boxes_per_image = args[0]
      image_shape = args[1]
      normalized_boxes_per_image = box_list_ops.to_normalized_coordinates(
          box_list.BoxList(proposal_boxes_per_image), image_shape[0],
          image_shape[1], check_range=False).get()
      return normalized_boxes_per_image
    normalized_proposal_boxes = shape_utils.static_or_dynamic_map_fn(
        normalize_boxes, elems=[proposal_boxes, image_shapes], dtype=tf.float32)
    raw_normalized_proposal_boxes = shape_utils.static_or_dynamic_map_fn(
        normalize_boxes,
        elems=[raw_proposal_boxes, image_shapes],
        dtype=tf.float32)
    return (normalized_proposal_boxes, proposal_scores, num_proposals,
            raw_normalized_proposal_boxes,
            rpn_objectness_predictions_with_background_batch)

  def _sample_box_classifier_batch(
      self,
      proposal_boxes,
      proposal_scores,
      num_proposals,
      groundtruth_boxlists,
      groundtruth_classes_with_background_list,
      groundtruth_weights_list):
    """Samples a minibatch for second stage.

    Args:
      proposal_boxes: A float tensor with shape
        [batch_size, num_proposals, 4] representing the (potentially zero
        padded) proposal boxes for all images in the batch.  These boxes are
        represented in absolute coordinates.
      proposal_scores:  A float tensor with shape
        [batch_size, num_proposals] representing the (potentially zero
        padded) proposal objectness scores for all images in the batch.
      num_proposals: A Tensor of type `int32`. A 1-D tensor of shape [batch]
        representing the number of proposals predicted for each image in
        the batch.
      groundtruth_boxlists: A list of BoxLists containing (absolute) coordinates
        of the groundtruth boxes.
      groundtruth_classes_with_background_list: A list of 2-D one-hot
        (or k-hot) tensors of shape [num_boxes, num_classes+1] containing the
        class targets with the 0th index assumed to map to the background class.
      groundtruth_weights_list: A list of 1-D tensors of shape [num_boxes]
        indicating the weight associated with the groundtruth boxes.

    Returns:
      proposal_boxes: A float tensor with shape
        [batch_size, second_stage_batch_size, 4] representing the (potentially
        zero padded) proposal boxes for all images in the batch.  These boxes
        are represented in absolute coordinates.
      proposal_scores:  A float tensor with shape
        [batch_size, second_stage_batch_size] representing the (potentially zero
        padded) proposal objectness scores for all images in the batch.
      num_proposals: A Tensor of type `int32`. A 1-D tensor of shape [batch]
        representing the number of proposals predicted for each image in
        the batch.
    """
    single_image_proposal_box_sample = []
    single_image_proposal_score_sample = []
    single_image_num_proposals_sample = []
    for (single_image_proposal_boxes,
         single_image_proposal_scores,
         single_image_num_proposals,
         single_image_groundtruth_boxlist,
         single_image_groundtruth_classes_with_background,
         single_image_groundtruth_weights) in zip(
             tf.unstack(proposal_boxes),
             tf.unstack(proposal_scores),
             tf.unstack(num_proposals),
             groundtruth_boxlists,
             groundtruth_classes_with_background_list,
             groundtruth_weights_list):
      single_image_boxlist = box_list.BoxList(single_image_proposal_boxes)
      single_image_boxlist.add_field(fields.BoxListFields.scores,
                                     single_image_proposal_scores)
      sampled_boxlist = self._sample_box_classifier_minibatch_single_image(
          single_image_boxlist,
          single_image_num_proposals,
          single_image_groundtruth_boxlist,
          single_image_groundtruth_classes_with_background,
          single_image_groundtruth_weights)
      sampled_padded_boxlist = box_list_ops.pad_or_clip_box_list(
          sampled_boxlist,
          num_boxes=self._second_stage_batch_size)
      single_image_num_proposals_sample.append(tf.minimum(
          sampled_boxlist.num_boxes(),
          self._second_stage_batch_size))
      bb = sampled_padded_boxlist.get()
      single_image_proposal_box_sample.append(bb)
      single_image_proposal_score_sample.append(
          sampled_padded_boxlist.get_field(fields.BoxListFields.scores))
    return (tf.stack(single_image_proposal_box_sample),
            tf.stack(single_image_proposal_score_sample),
            tf.stack(single_image_num_proposals_sample))

  def _format_groundtruth_data(self, true_image_shapes):
    """Helper function for preparing groundtruth data for target assignment.

    In order to be consistent with the model.DetectionModel interface,
    groundtruth boxes are specified in normalized coordinates and classes are
    specified as label indices with no assumed background category.  To prepare
    for target assignment, we:
    1) convert boxes to absolute coordinates,
    2) add a background class at class index 0
    3) groundtruth instance masks, if available, are resized to match
       image_shape.

    Args:
      true_image_shapes: int32 tensor of shape [batch, 3] where each row is
        of the form [height, width, channels] indicating the shapes
        of true images in the resized images, as resized images can be padded
        with zeros.

    Returns:
      groundtruth_boxlists: A list of BoxLists containing (absolute) coordinates
        of the groundtruth boxes.
      groundtruth_classes_with_background_list: A list of 2-D one-hot
        (or k-hot) tensors of shape [num_boxes, num_classes+1] containing the
        class targets with the 0th index assumed to map to the background class.
      groundtruth_masks_list: If present, a list of 3-D tf.float32 tensors of
        shape [num_boxes, image_height, image_width] containing instance masks.
        This is set to None if no masks exist in the provided groundtruth.
    """
    groundtruth_boxlists = [
        box_list_ops.to_absolute_coordinates(
            box_list.BoxList(boxes), true_image_shapes[i, 0],
            true_image_shapes[i, 1])
        for i, boxes in enumerate(
            self.groundtruth_lists(fields.BoxListFields.boxes))
    ]
    groundtruth_classes_with_background_list = [
        tf.to_float(
            tf.pad(one_hot_encoding, [[0, 0], [1, 0]], mode='CONSTANT'))
        for one_hot_encoding in self.groundtruth_lists(
            fields.BoxListFields.classes)]

    groundtruth_masks_list = self._groundtruth_lists.get(
        fields.BoxListFields.masks)
    # TODO(rathodv): Remove mask resizing once the legacy pipeline is deleted.
    if groundtruth_masks_list is not None and self._resize_masks:
      resized_masks_list = []
      for mask in groundtruth_masks_list:

        _, resized_mask, _ = self._image_resizer_fn(
            # Reuse the given `image_resizer_fn` to resize groundtruth masks.
            # `mask` tensor for an image is of the shape [num_masks,
            # image_height, image_width]. Below we create a dummy image of the
            # the shape [image_height, image_width, 1] to use with
            # `image_resizer_fn`.
            image=tf.zeros(tf.stack([tf.shape(mask)[1],
                                     tf.shape(mask)[2], 1])),
            masks=mask)
        resized_masks_list.append(resized_mask)

      groundtruth_masks_list = resized_masks_list
    if self.groundtruth_has_field(fields.BoxListFields.weights):
      groundtruth_weights_list = self.groundtruth_lists(
          fields.BoxListFields.weights)
    else:
      # Set weights for all batch elements equally to 1.0
      groundtruth_weights_list = []
      for groundtruth_classes in groundtruth_classes_with_background_list:
        num_gt = tf.shape(groundtruth_classes)[0]
        groundtruth_weights = tf.ones(num_gt)
        groundtruth_weights_list.append(groundtruth_weights)

    return (groundtruth_boxlists, groundtruth_classes_with_background_list,
            groundtruth_masks_list, groundtruth_weights_list)

  def _sample_box_classifier_minibatch_single_image(
      self, proposal_boxlist, num_valid_proposals, groundtruth_boxlist,
      groundtruth_classes_with_background, groundtruth_weights):
    """Samples a mini-batch of proposals to be sent to the box classifier.

    Helper function for self._postprocess_rpn.

    Args:
      proposal_boxlist: A BoxList containing K proposal boxes in absolute
        coordinates.
      num_valid_proposals: Number of valid proposals in the proposal boxlist.
      groundtruth_boxlist: A Boxlist containing N groundtruth object boxes in
        absolute coordinates.
      groundtruth_classes_with_background: A tensor with shape
        `[N, self.num_classes + 1]` representing groundtruth classes. The
        classes are assumed to be k-hot encoded, and include background as the
        zero-th class.
      groundtruth_weights: Weights attached to the groundtruth_boxes.

    Returns:
      a BoxList contained sampled proposals.
    """
    (cls_targets, cls_weights, _, _, _) = self._detector_target_assigner.assign(
        proposal_boxlist,
        groundtruth_boxlist,
        groundtruth_classes_with_background,
        unmatched_class_label=tf.constant(
            [1] + self._num_classes * [0], dtype=tf.float32),
        groundtruth_weights=groundtruth_weights)
    # Selects all boxes as candidates if none of them is selected according
    # to cls_weights. This could happen as boxes within certain IOU ranges
    # are ignored. If triggered, the selected boxes will still be ignored
    # during loss computation.
    cls_weights = tf.reduce_mean(cls_weights, axis=-1)
    positive_indicator = tf.greater(tf.argmax(cls_targets, axis=1), 0)
    valid_indicator = tf.logical_and(
        tf.range(proposal_boxlist.num_boxes()) < num_valid_proposals,
        cls_weights > 0
    )
    selected_positions = self._second_stage_sampler.subsample(
        valid_indicator,
        self._second_stage_batch_size,
        positive_indicator)
    return box_list_ops.boolean_mask(
        proposal_boxlist,
        selected_positions,
        use_static_shapes=self._use_static_shapes,
        indicator_sum=(self._second_stage_batch_size
                       if self._use_static_shapes else None))

  def _compute_second_stage_input_feature_maps(self, features_to_crop,
                                               proposal_boxes_normalized):
    """Crops to a set of proposals from the feature map for a batch of images.

    Helper function for self._postprocess_rpn. This function calls
    `tf.image.crop_and_resize` to create the feature map to be passed to the
    second stage box classifier for each proposal.

    Args:
      features_to_crop: A float32 tensor with shape
        [batch_size, height, width, depth]
      proposal_boxes_normalized: A float32 tensor with shape [batch_size,
        num_proposals, box_code_size] containing proposal boxes in
        normalized coordinates.

    Returns:
      A float32 tensor with shape [K, new_height, new_width, depth].
    """
    cropped_regions = self._flatten_first_two_dimensions(
        self._crop_and_resize_fn(
            features_to_crop, proposal_boxes_normalized,
            [self._initial_crop_size, self._initial_crop_size]))
    return slim.max_pool2d(
        cropped_regions,
        [self._maxpool_kernel_size, self._maxpool_kernel_size],
        stride=self._maxpool_stride)

  def _postprocess_box_classifier(self,
                                  refined_box_encodings,
                                  class_predictions_with_background,
                                  proposal_boxes,
                                  num_proposals,
                                  image_shapes,
                                  mask_predictions=None):
    """Converts predictions from the second stage box classifier to detections.

    Args:
      refined_box_encodings: a 3-D float tensor with shape
        [total_num_padded_proposals, num_classes, self._box_coder.code_size]
        representing predicted (final) refined box encodings. If using a shared
        box across classes the shape will instead be
        [total_num_padded_proposals, 1, 4]
      class_predictions_with_background: a 3-D tensor float with shape
        [total_num_padded_proposals, num_classes + 1] containing class
        predictions (logits) for each of the proposals.  Note that this tensor
        *includes* background class predictions (at class index 0).
      proposal_boxes: a 3-D float tensor with shape
        [batch_size, self.max_num_proposals, 4] representing decoded proposal
        bounding boxes in absolute coordinates.
      num_proposals: a 1-D int32 tensor of shape [batch] representing the number
        of proposals predicted for each image in the batch.
      image_shapes: a 2-D int32 tensor containing shapes of input image in the
        batch.
      mask_predictions: (optional) a 4-D float tensor with shape
        [total_num_padded_proposals, num_classes, mask_height, mask_width]
        containing instance mask prediction logits.

    Returns:
      A dictionary containing:
        `detection_boxes`: [batch, max_detection, 4] in normalized co-ordinates.
        `detection_scores`: [batch, max_detections]
        `detection_classes`: [batch, max_detections]
        `num_detections`: [batch]
        `detection_masks`:
          (optional) [batch, max_detections, mask_height, mask_width]. Note
          that a pixel-wise sigmoid score converter is applied to the detection
          masks.
        `raw_detection_boxes`: [batch, total_detections, 4] tensor with decoded
          detection boxes before Non-Max Suppression.
        `raw_detection_score`: [batch, total_detections,
          num_classes_with_background] tensor of multi-class score logits for
          raw detection boxes.
    """
    refined_box_encodings_batch = tf.reshape(
        refined_box_encodings,
        [-1,
         self.max_num_proposals,
         refined_box_encodings.shape[1],
         self._box_coder.code_size])
    class_predictions_with_background_batch = tf.reshape(
        class_predictions_with_background,
        [-1, self.max_num_proposals, self.num_classes + 1]
    )
    refined_decoded_boxes_batch = self._batch_decode_boxes(
        refined_box_encodings_batch, proposal_boxes)
    class_predictions_with_background_batch_normalized = (
        self._second_stage_score_conversion_fn(
            class_predictions_with_background_batch))
    class_predictions_batch = tf.reshape(
        tf.slice(class_predictions_with_background_batch_normalized,
                 [0, 0, 1], [-1, -1, -1]),
        [-1, self.max_num_proposals, self.num_classes])
    clip_window = self._compute_clip_window(image_shapes)
    mask_predictions_batch = None
    if mask_predictions is not None:
      mask_height = mask_predictions.shape[2].value
      mask_width = mask_predictions.shape[3].value
      mask_predictions = tf.sigmoid(mask_predictions)
      mask_predictions_batch = tf.reshape(
          mask_predictions, [-1, self.max_num_proposals,
                             self.num_classes, mask_height, mask_width])

    (nmsed_boxes, nmsed_scores, nmsed_classes, nmsed_masks, _,
     num_detections) = self._second_stage_nms_fn(
         refined_decoded_boxes_batch,
         class_predictions_batch,
         clip_window=clip_window,
         change_coordinate_frame=True,
         num_valid_boxes=num_proposals,
         masks=mask_predictions_batch)
    if refined_decoded_boxes_batch.shape[2] > 1:
      class_ids = tf.expand_dims(
          tf.argmax(class_predictions_with_background_batch[:, :, 1:], axis=2,
                    output_type=tf.int32),
          axis=-1)
      raw_detection_boxes = tf.squeeze(
          tf.batch_gather(refined_decoded_boxes_batch, class_ids), axis=2)
    else:
      raw_detection_boxes = tf.squeeze(refined_decoded_boxes_batch, axis=2)

    def normalize_and_clip_boxes(args):
      """Normalize and clip boxes."""
      boxes_per_image = args[0]
      image_shape = args[1]
      normalized_boxes_per_image = box_list_ops.to_normalized_coordinates(
          box_list.BoxList(boxes_per_image),
          image_shape[0],
          image_shape[1],
          check_range=False).get()

      normalized_boxes_per_image = box_list_ops.clip_to_window(
          box_list.BoxList(normalized_boxes_per_image),
          tf.constant([0.0, 0.0, 1.0, 1.0], tf.float32),
          filter_nonoverlapping=False).get()

      return normalized_boxes_per_image

    raw_normalized_detection_boxes = shape_utils.static_or_dynamic_map_fn(
        normalize_and_clip_boxes,
        elems=[raw_detection_boxes, image_shapes],
        dtype=tf.float32)

    detections = {
        fields.DetectionResultFields.detection_boxes:
            nmsed_boxes,
        fields.DetectionResultFields.detection_scores:
            nmsed_scores,
        fields.DetectionResultFields.detection_classes:
            nmsed_classes,
        fields.DetectionResultFields.num_detections:
            tf.to_float(num_detections),
        fields.DetectionResultFields.raw_detection_boxes:
            raw_normalized_detection_boxes,
        fields.DetectionResultFields.raw_detection_scores:
            class_predictions_with_background_batch
    }
    if nmsed_masks is not None:
      detections[fields.DetectionResultFields.detection_masks] = nmsed_masks
    return detections

  def _batch_decode_boxes(self, box_encodings, anchor_boxes):
    """Decodes box encodings with respect to the anchor boxes.

    Args:
      box_encodings: a 4-D tensor with shape
        [batch_size, num_anchors, num_classes, self._box_coder.code_size]
        representing box encodings.
      anchor_boxes: [batch_size, num_anchors, self._box_coder.code_size]
        representing decoded bounding boxes. If using a shared box across
        classes the shape will instead be
        [total_num_proposals, 1, self._box_coder.code_size].

    Returns:
      decoded_boxes: a
        [batch_size, num_anchors, num_classes, self._box_coder.code_size]
        float tensor representing bounding box predictions (for each image in
        batch, proposal and class). If using a shared box across classes the
        shape will instead be
        [batch_size, num_anchors, 1, self._box_coder.code_size].
    """
    combined_shape = shape_utils.combined_static_and_dynamic_shape(
        box_encodings)
    num_classes = combined_shape[2]
    tiled_anchor_boxes = tf.tile(
        tf.expand_dims(anchor_boxes, 2), [1, 1, num_classes, 1])
    tiled_anchors_boxlist = box_list.BoxList(
        tf.reshape(tiled_anchor_boxes, [-1, 4]))
    decoded_boxes = self._box_coder.decode(
        tf.reshape(box_encodings, [-1, self._box_coder.code_size]),
        tiled_anchors_boxlist)
    return tf.reshape(decoded_boxes.get(),
                      tf.stack([combined_shape[0], combined_shape[1],
                                num_classes, 4]))

  def loss(self, prediction_dict, true_image_shapes, scope=None):
    """Compute scalar loss tensors given prediction tensors.

    If number_of_stages=1, only RPN related losses are computed (i.e.,
    `rpn_localization_loss` and `rpn_objectness_loss`).  Otherwise all
    losses are computed.

    Args:
      prediction_dict: a dictionary holding prediction tensors (see the
        documentation for the predict method.  If number_of_stages=1, we
        expect prediction_dict to contain `rpn_box_encodings`,
        `rpn_objectness_predictions_with_background`, `rpn_features_to_crop`,
        `image_shape`, and `anchors` fields.  Otherwise we expect
        prediction_dict to additionally contain `refined_box_encodings`,
        `class_predictions_with_background`, `num_proposals`, and
        `proposal_boxes` fields.
      true_image_shapes: int32 tensor of shape [batch, 3] where each row is
        of the form [height, width, channels] indicating the shapes
        of true images in the resized images, as resized images can be padded
        with zeros.
      scope: Optional scope name.

    Returns:
      a dictionary mapping loss keys (`first_stage_localization_loss`,
        `first_stage_objectness_loss`, 'second_stage_localization_loss',
        'second_stage_classification_loss') to scalar tensors representing
        corresponding loss values.
    """
    with tf.name_scope(scope, 'Loss', prediction_dict.values()):
      (groundtruth_boxlists, groundtruth_classes_with_background_list,
       groundtruth_masks_list, groundtruth_weights_list
      ) = self._format_groundtruth_data(true_image_shapes)
      loss_dict = self._loss_rpn(
          prediction_dict['rpn_box_encodings'],
          prediction_dict['rpn_objectness_predictions_with_background'],
          prediction_dict['anchors'], groundtruth_boxlists,
          groundtruth_classes_with_background_list, groundtruth_weights_list)
      if self._number_of_stages > 1:
        loss_dict.update(
            self._loss_box_classifier(
                prediction_dict['refined_box_encodings'],
                prediction_dict['class_predictions_with_background'],
                prediction_dict['proposal_boxes'],
                prediction_dict['num_proposals'], groundtruth_boxlists,
                groundtruth_classes_with_background_list,
                groundtruth_weights_list, prediction_dict['image_shape'],
                prediction_dict.get('mask_predictions'), groundtruth_masks_list,
                prediction_dict.get(
                    fields.DetectionResultFields.detection_boxes),
                prediction_dict.get(
                    fields.DetectionResultFields.num_detections)))
    return loss_dict

  def _loss_rpn(self, rpn_box_encodings,
                rpn_objectness_predictions_with_background, anchors,
                groundtruth_boxlists, groundtruth_classes_with_background_list,
                groundtruth_weights_list):
    """Computes scalar RPN loss tensors.

    Uses self._proposal_target_assigner to obtain regression and classification
    targets for the first stage RPN, samples a "minibatch" of anchors to
    participate in the loss computation, and returns the RPN losses.

    Args:
      rpn_box_encodings: A 4-D float tensor of shape
        [batch_size, num_anchors, self._box_coder.code_size] containing
        predicted proposal box encodings.
      rpn_objectness_predictions_with_background: A 2-D float tensor of shape
        [batch_size, num_anchors, 2] containing objectness predictions
        (logits) for each of the anchors with 0 corresponding to background
        and 1 corresponding to object.
      anchors: A 2-D tensor of shape [num_anchors, 4] representing anchors
        for the first stage RPN.  Note that `num_anchors` can differ depending
        on whether the model is created in training or inference mode.
      groundtruth_boxlists: A list of BoxLists containing coordinates of the
        groundtruth boxes.
      groundtruth_classes_with_background_list: A list of 2-D one-hot
        (or k-hot) tensors of shape [num_boxes, num_classes+1] containing the
        class targets with the 0th index assumed to map to the background class.
      groundtruth_weights_list: A list of 1-D tf.float32 tensors of shape
        [num_boxes] containing weights for groundtruth boxes.

    Returns:
      a dictionary mapping loss keys (`first_stage_localization_loss`,
        `first_stage_objectness_loss`) to scalar tensors representing
        corresponding loss values.
    """
    with tf.name_scope('RPNLoss'):
      (batch_cls_targets, batch_cls_weights, batch_reg_targets,
       batch_reg_weights, _) = target_assigner.batch_assign_targets(
           target_assigner=self._proposal_target_assigner,
           anchors_batch=box_list.BoxList(anchors),
           gt_box_batch=groundtruth_boxlists,
           gt_class_targets_batch=(len(groundtruth_boxlists) * [None]),
           gt_weights_batch=groundtruth_weights_list)
      batch_cls_weights = tf.reduce_mean(batch_cls_weights, axis=2)
      batch_cls_targets = tf.squeeze(batch_cls_targets, axis=2)

      def _minibatch_subsample_fn(inputs):
        cls_targets, cls_weights = inputs
        return self._first_stage_sampler.subsample(
            tf.cast(cls_weights, tf.bool),
            self._first_stage_minibatch_size, tf.cast(cls_targets, tf.bool))
      batch_sampled_indices = tf.to_float(shape_utils.static_or_dynamic_map_fn(
          _minibatch_subsample_fn,
          [batch_cls_targets, batch_cls_weights],
          dtype=tf.bool,
          parallel_iterations=self._parallel_iterations,
          back_prop=True))

      # Normalize by number of examples in sampled minibatch
      normalizer = tf.maximum(
          tf.reduce_sum(batch_sampled_indices, axis=1), 1.0)
      batch_one_hot_targets = tf.one_hot(
          tf.to_int32(batch_cls_targets), depth=2)
      sampled_reg_indices = tf.multiply(batch_sampled_indices,
                                        batch_reg_weights)

      losses_mask = None
      if self.groundtruth_has_field(fields.InputDataFields.is_annotated):
        losses_mask = tf.stack(self.groundtruth_lists(
            fields.InputDataFields.is_annotated))
      localization_losses = self._first_stage_localization_loss(
          rpn_box_encodings, batch_reg_targets, weights=sampled_reg_indices,
          losses_mask=losses_mask)
      objectness_losses = self._first_stage_objectness_loss(
          rpn_objectness_predictions_with_background,
          batch_one_hot_targets,
          weights=tf.expand_dims(batch_sampled_indices, axis=-1),
          losses_mask=losses_mask)
      localization_loss = tf.reduce_mean(
          tf.reduce_sum(localization_losses, axis=1) / normalizer)
      objectness_loss = tf.reduce_mean(
          tf.reduce_sum(objectness_losses, axis=1) / normalizer)

      localization_loss = tf.multiply(self._first_stage_loc_loss_weight,
                                      localization_loss,
                                      name='localization_loss')
      objectness_loss = tf.multiply(self._first_stage_obj_loss_weight,
                                    objectness_loss, name='objectness_loss')
      loss_dict = {localization_loss.op.name: localization_loss,
                   objectness_loss.op.name: objectness_loss}
    return loss_dict

  def _loss_box_classifier(self,
                           refined_box_encodings,
                           class_predictions_with_background,
                           proposal_boxes,
                           num_proposals,
                           groundtruth_boxlists,
                           groundtruth_classes_with_background_list,
                           groundtruth_weights_list,
                           image_shape,
                           prediction_masks=None,
                           groundtruth_masks_list=None,
                           detection_boxes=None,
                           num_detections=None):
    """Computes scalar box classifier loss tensors.

    Uses self._detector_target_assigner to obtain regression and classification
    targets for the second stage box classifier, optionally performs
    hard mining, and returns losses.  All losses are computed independently
    for each image and then averaged across the batch.
    Please note that for boxes and masks with multiple labels, the box
    regression and mask prediction losses are only computed for one label.

    This function assumes that the proposal boxes in the "padded" regions are
    actually zero (and thus should not be matched to).


    Args:
      refined_box_encodings: a 3-D tensor with shape
        [total_num_proposals, num_classes, box_coder.code_size] representing
        predicted (final) refined box encodings. If using a shared box across
        classes this will instead have shape
        [total_num_proposals, 1, box_coder.code_size].
      class_predictions_with_background: a 2-D tensor with shape
        [total_num_proposals, num_classes + 1] containing class
        predictions (logits) for each of the anchors.  Note that this tensor
        *includes* background class predictions (at class index 0).
      proposal_boxes: [batch_size, self.max_num_proposals, 4] representing
        decoded proposal bounding boxes.
      num_proposals: A Tensor of type `int32`. A 1-D tensor of shape [batch]
        representing the number of proposals predicted for each image in
        the batch.
      groundtruth_boxlists: a list of BoxLists containing coordinates of the
        groundtruth boxes.
      groundtruth_classes_with_background_list: a list of 2-D one-hot
        (or k-hot) tensors of shape [num_boxes, num_classes + 1] containing the
        class targets with the 0th index assumed to map to the background class.
      groundtruth_weights_list: A list of 1-D tf.float32 tensors of shape
        [num_boxes] containing weights for groundtruth boxes.
      image_shape: a 1-D tensor of shape [4] representing the image shape.
      prediction_masks: an optional 4-D tensor with shape [total_num_proposals,
        num_classes, mask_height, mask_width] containing the instance masks for
        each box.
      groundtruth_masks_list: an optional list of 3-D tensors of shape
        [num_boxes, image_height, image_width] containing the instance masks for
        each of the boxes.
      detection_boxes: 3-D float tensor of shape [batch,
        max_total_detections, 4] containing post-processed detection boxes in
        normalized co-ordinates.
      num_detections: 1-D int32 tensor of shape [batch] containing number of
        valid detections in `detection_boxes`.

    Returns:
      a dictionary mapping loss keys ('second_stage_localization_loss',
        'second_stage_classification_loss') to scalar tensors representing
        corresponding loss values.

    Raises:
      ValueError: if `predict_instance_masks` in
        second_stage_mask_rcnn_box_predictor is True and
        `groundtruth_masks_list` is not provided.
    """
    with tf.name_scope('BoxClassifierLoss'):
      paddings_indicator = self._padded_batched_proposals_indicator(
          num_proposals, proposal_boxes.shape[1])
      proposal_boxlists = [
          box_list.BoxList(proposal_boxes_single_image)
          for proposal_boxes_single_image in tf.unstack(proposal_boxes)]
      batch_size = len(proposal_boxlists)

      num_proposals_or_one = tf.to_float(tf.expand_dims(
          tf.maximum(num_proposals, tf.ones_like(num_proposals)), 1))
      normalizer = tf.tile(num_proposals_or_one,
                           [1, self.max_num_proposals]) * batch_size

      (batch_cls_targets_with_background, batch_cls_weights, batch_reg_targets,
       batch_reg_weights, _) = target_assigner.batch_assign_targets(
           target_assigner=self._detector_target_assigner,
           anchors_batch=proposal_boxlists,
           gt_box_batch=groundtruth_boxlists,
           gt_class_targets_batch=groundtruth_classes_with_background_list,
           unmatched_class_label=tf.constant(
               [1] + self._num_classes * [0], dtype=tf.float32),
           gt_weights_batch=groundtruth_weights_list)

      class_predictions_with_background = tf.reshape(
          class_predictions_with_background,
          [batch_size, self.max_num_proposals, -1])

      flat_cls_targets_with_background = tf.reshape(
          batch_cls_targets_with_background,
          [batch_size * self.max_num_proposals, -1])
      one_hot_flat_cls_targets_with_background = tf.argmax(
          flat_cls_targets_with_background, axis=1)
      one_hot_flat_cls_targets_with_background = tf.one_hot(
          one_hot_flat_cls_targets_with_background,
          flat_cls_targets_with_background.get_shape()[1])

      # If using a shared box across classes use directly
      if refined_box_encodings.shape[1] == 1:
        reshaped_refined_box_encodings = tf.reshape(
            refined_box_encodings,
            [batch_size, self.max_num_proposals, self._box_coder.code_size])
      # For anchors with multiple labels, picks refined_location_encodings
      # for just one class to avoid over-counting for regression loss and
      # (optionally) mask loss.
      else:
        reshaped_refined_box_encodings = (
            self._get_refined_encodings_for_postitive_class(
                refined_box_encodings,
                one_hot_flat_cls_targets_with_background, batch_size))

      losses_mask = None
      if self.groundtruth_has_field(fields.InputDataFields.is_annotated):
        losses_mask = tf.stack(self.groundtruth_lists(
            fields.InputDataFields.is_annotated))
      second_stage_loc_losses = self._second_stage_localization_loss(
          reshaped_refined_box_encodings,
          batch_reg_targets,
          weights=batch_reg_weights,
          losses_mask=losses_mask) / normalizer
      second_stage_cls_losses = ops.reduce_sum_trailing_dimensions(
          self._second_stage_classification_loss(
              class_predictions_with_background,
              batch_cls_targets_with_background,
              weights=batch_cls_weights,
              losses_mask=losses_mask),
          ndims=2) / normalizer

      second_stage_loc_loss = tf.reduce_sum(
          second_stage_loc_losses * tf.to_float(paddings_indicator))
      second_stage_cls_loss = tf.reduce_sum(
          second_stage_cls_losses * tf.to_float(paddings_indicator))

      if self._hard_example_miner:
        (second_stage_loc_loss, second_stage_cls_loss
        ) = self._unpad_proposals_and_apply_hard_mining(
            proposal_boxlists, second_stage_loc_losses,
            second_stage_cls_losses, num_proposals)
      localization_loss = tf.multiply(self._second_stage_loc_loss_weight,
                                      second_stage_loc_loss,
                                      name='localization_loss')

      classification_loss = tf.multiply(self._second_stage_cls_loss_weight,
                                        second_stage_cls_loss,
                                        name='classification_loss')

      loss_dict = {localization_loss.op.name: localization_loss,
                   classification_loss.op.name: classification_loss}
      second_stage_mask_loss = None
      if prediction_masks is not None:
        if groundtruth_masks_list is None:
          raise ValueError('Groundtruth instance masks not provided. '
                           'Please configure input reader.')

        if not self._is_training:
          (proposal_boxes, proposal_boxlists, paddings_indicator,
           one_hot_flat_cls_targets_with_background
          ) = self._get_mask_proposal_boxes_and_classes(
              detection_boxes, num_detections, image_shape,
              groundtruth_boxlists, groundtruth_classes_with_background_list,
              groundtruth_weights_list)
        unmatched_mask_label = tf.zeros(image_shape[1:3], dtype=tf.float32)
        (batch_mask_targets, _, _, batch_mask_target_weights,
         _) = target_assigner.batch_assign_targets(
             target_assigner=self._detector_target_assigner,
             anchors_batch=proposal_boxlists,
             gt_box_batch=groundtruth_boxlists,
             gt_class_targets_batch=groundtruth_masks_list,
             unmatched_class_label=unmatched_mask_label,
             gt_weights_batch=groundtruth_weights_list)

        # Pad the prediction_masks with to add zeros for background class to be
        # consistent with class predictions.
        if prediction_masks.get_shape().as_list()[1] == 1:
          # Class agnostic masks or masks for one-class prediction. Logic for
          # both cases is the same since background predictions are ignored
          # through the batch_mask_target_weights.
          prediction_masks_masked_by_class_targets = prediction_masks
        else:
          prediction_masks_with_background = tf.pad(
              prediction_masks, [[0, 0], [1, 0], [0, 0], [0, 0]])
          prediction_masks_masked_by_class_targets = tf.boolean_mask(
              prediction_masks_with_background,
              tf.greater(one_hot_flat_cls_targets_with_background, 0))

        mask_height = prediction_masks.shape[2].value
        mask_width = prediction_masks.shape[3].value
        reshaped_prediction_masks = tf.reshape(
            prediction_masks_masked_by_class_targets,
            [batch_size, -1, mask_height * mask_width])

        batch_mask_targets_shape = tf.shape(batch_mask_targets)
        flat_gt_masks = tf.reshape(batch_mask_targets,
                                   [-1, batch_mask_targets_shape[2],
                                    batch_mask_targets_shape[3]])

        # Use normalized proposals to crop mask targets from image masks.
        flat_normalized_proposals = box_list_ops.to_normalized_coordinates(
            box_list.BoxList(tf.reshape(proposal_boxes, [-1, 4])),
            image_shape[1], image_shape[2]).get()

        flat_cropped_gt_mask = self._crop_and_resize_fn(
            tf.expand_dims(flat_gt_masks, -1),
            tf.expand_dims(flat_normalized_proposals, axis=1),
            [mask_height, mask_width])
        # Without stopping gradients into cropped groundtruth masks the
        # performance with 100-padded groundtruth masks when batch size > 1 is
        # about 4% worse.
        # TODO(rathodv): Investigate this since we don't expect any variables
        # upstream of flat_cropped_gt_mask.
        flat_cropped_gt_mask = tf.stop_gradient(flat_cropped_gt_mask)

        batch_cropped_gt_mask = tf.reshape(
            flat_cropped_gt_mask,
            [batch_size, -1, mask_height * mask_width])

        mask_losses_weights = (
            batch_mask_target_weights * tf.to_float(paddings_indicator))
        mask_losses = self._second_stage_mask_loss(
            reshaped_prediction_masks,
            batch_cropped_gt_mask,
            weights=tf.expand_dims(mask_losses_weights, axis=-1),
            losses_mask=losses_mask)
        total_mask_loss = tf.reduce_sum(mask_losses)
        normalizer = tf.maximum(
            tf.reduce_sum(mask_losses_weights * mask_height * mask_width), 1.0)
        second_stage_mask_loss = total_mask_loss / normalizer

      if second_stage_mask_loss is not None:
        mask_loss = tf.multiply(self._second_stage_mask_loss_weight,
                                second_stage_mask_loss, name='mask_loss')
        loss_dict[mask_loss.op.name] = mask_loss
    return loss_dict

  def _get_mask_proposal_boxes_and_classes(
      self, detection_boxes, num_detections, image_shape, groundtruth_boxlists,
      groundtruth_classes_with_background_list, groundtruth_weights_list):
    """Returns proposal boxes and class targets to compute evaluation mask loss.

    During evaluation, detection boxes are used to extract features for mask
    prediction. Therefore, to compute mask loss during evaluation detection
    boxes must be used to compute correct class and mask targets. This function
    returns boxes and classes in the correct format for computing mask targets
    during evaluation.

    Args:
      detection_boxes: A 3-D float tensor of shape [batch, max_detection_boxes,
        4] containing detection boxes in normalized co-ordinates.
      num_detections: A 1-D float tensor of shape [batch] containing number of
        valid boxes in `detection_boxes`.
      image_shape: A 1-D tensor of shape [4] containing image tensor shape.
      groundtruth_boxlists: A list of groundtruth boxlists.
      groundtruth_classes_with_background_list: A list of groundtruth classes.
      groundtruth_weights_list: A list of groundtruth weights.
    Return:
      mask_proposal_boxes: detection boxes to use for mask proposals in absolute
        co-ordinates.
      mask_proposal_boxlists: `mask_proposal_boxes` in a list of BoxLists in
        absolute co-ordinates.
      mask_proposal_paddings_indicator: a tensor indicating valid boxes.
      mask_proposal_one_hot_flat_cls_targets_with_background: Class targets
        computed using detection boxes.
    """
    batch, max_num_detections, _ = detection_boxes.shape.as_list()
    proposal_boxes = tf.reshape(box_list_ops.to_absolute_coordinates(
        box_list.BoxList(tf.reshape(detection_boxes, [-1, 4])), image_shape[1],
        image_shape[2]).get(), [batch, max_num_detections, 4])
    proposal_boxlists = [
        box_list.BoxList(detection_boxes_single_image)
        for detection_boxes_single_image in tf.unstack(proposal_boxes)
    ]
    paddings_indicator = self._padded_batched_proposals_indicator(
        tf.to_int32(num_detections), detection_boxes.shape[1])
    (batch_cls_targets_with_background, _, _, _,
     _) = target_assigner.batch_assign_targets(
         target_assigner=self._detector_target_assigner,
         anchors_batch=proposal_boxlists,
         gt_box_batch=groundtruth_boxlists,
         gt_class_targets_batch=groundtruth_classes_with_background_list,
         unmatched_class_label=tf.constant(
             [1] + self._num_classes * [0], dtype=tf.float32),
         gt_weights_batch=groundtruth_weights_list)
    flat_cls_targets_with_background = tf.reshape(
        batch_cls_targets_with_background, [-1, self._num_classes + 1])
    one_hot_flat_cls_targets_with_background = tf.argmax(
        flat_cls_targets_with_background, axis=1)
    one_hot_flat_cls_targets_with_background = tf.one_hot(
        one_hot_flat_cls_targets_with_background,
        flat_cls_targets_with_background.get_shape()[1])
    return (proposal_boxes, proposal_boxlists, paddings_indicator,
            one_hot_flat_cls_targets_with_background)

  def _get_refined_encodings_for_postitive_class(
      self, refined_box_encodings, flat_cls_targets_with_background,
      batch_size):
    # We only predict refined location encodings for the non background
    # classes, but we now pad it to make it compatible with the class
    # predictions
    refined_box_encodings_with_background = tf.pad(refined_box_encodings,
                                                   [[0, 0], [1, 0], [0, 0]])
    refined_box_encodings_masked_by_class_targets = (
        box_list_ops.boolean_mask(
            box_list.BoxList(
                tf.reshape(refined_box_encodings_with_background,
                           [-1, self._box_coder.code_size])),
            tf.reshape(tf.greater(flat_cls_targets_with_background, 0), [-1]),
            use_static_shapes=self._use_static_shapes,
            indicator_sum=batch_size * self.max_num_proposals
            if self._use_static_shapes else None).get())
    return tf.reshape(
        refined_box_encodings_masked_by_class_targets, [
            batch_size, self.max_num_proposals,
            self._box_coder.code_size
        ])

  def _padded_batched_proposals_indicator(self,
                                          num_proposals,
                                          max_num_proposals):
    """Creates indicator matrix of non-pad elements of padded batch proposals.

    Args:
      num_proposals: Tensor of type tf.int32 with shape [batch_size].
      max_num_proposals: Maximum number of proposals per image (integer).

    Returns:
      A Tensor of type tf.bool with shape [batch_size, max_num_proposals].
    """
    batch_size = tf.size(num_proposals)
    tiled_num_proposals = tf.tile(
        tf.expand_dims(num_proposals, 1), [1, max_num_proposals])
    tiled_proposal_index = tf.tile(
        tf.expand_dims(tf.range(max_num_proposals), 0), [batch_size, 1])
    return tf.greater(tiled_num_proposals, tiled_proposal_index)

  def _unpad_proposals_and_apply_hard_mining(self,
                                             proposal_boxlists,
                                             second_stage_loc_losses,
                                             second_stage_cls_losses,
                                             num_proposals):
    """Unpads proposals and applies hard mining.

    Args:
      proposal_boxlists: A list of `batch_size` BoxLists each representing
        `self.max_num_proposals` representing decoded proposal bounding boxes
        for each image.
      second_stage_loc_losses: A Tensor of type `float32`. A tensor of shape
        `[batch_size, self.max_num_proposals]` representing per-anchor
        second stage localization loss values.
      second_stage_cls_losses: A Tensor of type `float32`. A tensor of shape
        `[batch_size, self.max_num_proposals]` representing per-anchor
        second stage classification loss values.
      num_proposals: A Tensor of type `int32`. A 1-D tensor of shape [batch]
        representing the number of proposals predicted for each image in
        the batch.

    Returns:
      second_stage_loc_loss: A scalar float32 tensor representing the second
        stage localization loss.
      second_stage_cls_loss: A scalar float32 tensor representing the second
        stage classification loss.
    """
    for (proposal_boxlist, single_image_loc_loss, single_image_cls_loss,
         single_image_num_proposals) in zip(
             proposal_boxlists,
             tf.unstack(second_stage_loc_losses),
             tf.unstack(second_stage_cls_losses),
             tf.unstack(num_proposals)):
      proposal_boxlist = box_list.BoxList(
          tf.slice(proposal_boxlist.get(),
                   [0, 0], [single_image_num_proposals, -1]))
      single_image_loc_loss = tf.slice(single_image_loc_loss,
                                       [0], [single_image_num_proposals])
      single_image_cls_loss = tf.slice(single_image_cls_loss,
                                       [0], [single_image_num_proposals])
      return self._hard_example_miner(
          location_losses=tf.expand_dims(single_image_loc_loss, 0),
          cls_losses=tf.expand_dims(single_image_cls_loss, 0),
          decoded_boxlist_list=[proposal_boxlist])

  def regularization_losses(self):
    """Returns a list of regularization losses for this model.

    Returns a list of regularization losses for this model that the estimator
    needs to use during training/optimization.

    Returns:
      A list of regularization loss tensors.
    """
    return tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)

  def restore_map(self,
                  fine_tune_checkpoint_type='detection',
                  load_all_detection_checkpoint_vars=False):
    """Returns a map of variables to load from a foreign checkpoint.

    See parent class for details.

    Args:
      fine_tune_checkpoint_type: whether to restore from a full detection
        checkpoint (with compatible variable names) or to restore from a
        classification checkpoint for initialization prior to training.
        Valid values: `detection`, `classification`. Default 'detection'.
       load_all_detection_checkpoint_vars: whether to load all variables (when
         `fine_tune_checkpoint_type` is `detection`). If False, only variables
         within the feature extractor scopes are included. Default False.

    Returns:
      A dict mapping variable names (to load from a checkpoint) to variables in
      the model graph.
    Raises:
      ValueError: if fine_tune_checkpoint_type is neither `classification`
        nor `detection`.
    """
    if fine_tune_checkpoint_type not in ['detection', 'classification']:
      raise ValueError('Not supported fine_tune_checkpoint_type: {}'.format(
          fine_tune_checkpoint_type))
    if fine_tune_checkpoint_type == 'classification':
      return self._feature_extractor.restore_from_classification_checkpoint_fn(
          self.first_stage_feature_extractor_scope,
          self.second_stage_feature_extractor_scope)

    variables_to_restore = tf.global_variables()
    variables_to_restore.append(slim.get_or_create_global_step())
    # Only load feature extractor variables to be consistent with loading from
    # a classification checkpoint.
    include_patterns = None
    if not load_all_detection_checkpoint_vars:
      include_patterns = [
          self.first_stage_feature_extractor_scope,
          self.second_stage_feature_extractor_scope
      ]
    feature_extractor_variables = tf.contrib.framework.filter_variables(
        variables_to_restore, include_patterns=include_patterns)
    return {var.op.name: var for var in feature_extractor_variables}

  def updates(self):
    """Returns a list of update operators for this model.

    Returns a list of update operators for this model that must be executed at
    each training step. The estimator's train op needs to have a control
    dependency on these updates.

    Returns:
      A list of update operators.
    """
    return tf.get_collection(tf.GraphKeys.UPDATE_OPS)