File size: 29,443 Bytes
9a393e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 |
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Model input function for tf-learn object detection model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import tensorflow as tf
from object_detection.builders import dataset_builder
from object_detection.builders import image_resizer_builder
from object_detection.builders import model_builder
from object_detection.builders import preprocessor_builder
from object_detection.core import preprocessor
from object_detection.core import standard_fields as fields
from object_detection.data_decoders import tf_example_decoder
from object_detection.protos import eval_pb2
from object_detection.protos import input_reader_pb2
from object_detection.protos import model_pb2
from object_detection.protos import train_pb2
from object_detection.utils import config_util
from object_detection.utils import ops as util_ops
from object_detection.utils import shape_utils
HASH_KEY = 'hash'
HASH_BINS = 1 << 31
SERVING_FED_EXAMPLE_KEY = 'serialized_example'
# A map of names to methods that help build the input pipeline.
INPUT_BUILDER_UTIL_MAP = {
'dataset_build': dataset_builder.build,
}
def transform_input_data(tensor_dict,
model_preprocess_fn,
image_resizer_fn,
num_classes,
data_augmentation_fn=None,
merge_multiple_boxes=False,
retain_original_image=False,
use_multiclass_scores=False,
use_bfloat16=False):
"""A single function that is responsible for all input data transformations.
Data transformation functions are applied in the following order.
1. If key fields.InputDataFields.image_additional_channels is present in
tensor_dict, the additional channels will be merged into
fields.InputDataFields.image.
2. data_augmentation_fn (optional): applied on tensor_dict.
3. model_preprocess_fn: applied only on image tensor in tensor_dict.
4. image_resizer_fn: applied on original image and instance mask tensor in
tensor_dict.
5. one_hot_encoding: applied to classes tensor in tensor_dict.
6. merge_multiple_boxes (optional): when groundtruth boxes are exactly the
same they can be merged into a single box with an associated k-hot class
label.
Args:
tensor_dict: dictionary containing input tensors keyed by
fields.InputDataFields.
model_preprocess_fn: model's preprocess function to apply on image tensor.
This function must take in a 4-D float tensor and return a 4-D preprocess
float tensor and a tensor containing the true image shape.
image_resizer_fn: image resizer function to apply on groundtruth instance
`masks. This function must take a 3-D float tensor of an image and a 3-D
tensor of instance masks and return a resized version of these along with
the true shapes.
num_classes: number of max classes to one-hot (or k-hot) encode the class
labels.
data_augmentation_fn: (optional) data augmentation function to apply on
input `tensor_dict`.
merge_multiple_boxes: (optional) whether to merge multiple groundtruth boxes
and classes for a given image if the boxes are exactly the same.
retain_original_image: (optional) whether to retain original image in the
output dictionary.
use_multiclass_scores: whether to use multiclass scores as
class targets instead of one-hot encoding of `groundtruth_classes`.
use_bfloat16: (optional) a bool, whether to use bfloat16 in training.
Returns:
A dictionary keyed by fields.InputDataFields containing the tensors obtained
after applying all the transformations.
"""
# Reshape flattened multiclass scores tensor into a 2D tensor of shape
# [num_boxes, num_classes].
if fields.InputDataFields.multiclass_scores in tensor_dict:
tensor_dict[fields.InputDataFields.multiclass_scores] = tf.reshape(
tensor_dict[fields.InputDataFields.multiclass_scores], [
tf.shape(tensor_dict[fields.InputDataFields.groundtruth_boxes])[0],
num_classes
])
if fields.InputDataFields.groundtruth_boxes in tensor_dict:
tensor_dict = util_ops.filter_groundtruth_with_nan_box_coordinates(
tensor_dict)
tensor_dict = util_ops.filter_unrecognized_classes(tensor_dict)
if retain_original_image:
tensor_dict[fields.InputDataFields.original_image] = tf.cast(
image_resizer_fn(tensor_dict[fields.InputDataFields.image], None)[0],
tf.uint8)
if fields.InputDataFields.image_additional_channels in tensor_dict:
channels = tensor_dict[fields.InputDataFields.image_additional_channels]
tensor_dict[fields.InputDataFields.image] = tf.concat(
[tensor_dict[fields.InputDataFields.image], channels], axis=2)
# Apply data augmentation ops.
if data_augmentation_fn is not None:
tensor_dict = data_augmentation_fn(tensor_dict)
# Apply model preprocessing ops and resize instance masks.
image = tensor_dict[fields.InputDataFields.image]
preprocessed_resized_image, true_image_shape = model_preprocess_fn(
tf.expand_dims(tf.to_float(image), axis=0))
if use_bfloat16:
preprocessed_resized_image = tf.cast(
preprocessed_resized_image, tf.bfloat16)
tensor_dict[fields.InputDataFields.image] = tf.squeeze(
preprocessed_resized_image, axis=0)
tensor_dict[fields.InputDataFields.true_image_shape] = tf.squeeze(
true_image_shape, axis=0)
if fields.InputDataFields.groundtruth_instance_masks in tensor_dict:
masks = tensor_dict[fields.InputDataFields.groundtruth_instance_masks]
_, resized_masks, _ = image_resizer_fn(image, masks)
if use_bfloat16:
resized_masks = tf.cast(resized_masks, tf.bfloat16)
tensor_dict[fields.InputDataFields.
groundtruth_instance_masks] = resized_masks
# Transform groundtruth classes to one hot encodings.
label_offset = 1
zero_indexed_groundtruth_classes = tensor_dict[
fields.InputDataFields.groundtruth_classes] - label_offset
tensor_dict[fields.InputDataFields.groundtruth_classes] = tf.one_hot(
zero_indexed_groundtruth_classes, num_classes)
if use_multiclass_scores:
tensor_dict[fields.InputDataFields.groundtruth_classes] = tensor_dict[
fields.InputDataFields.multiclass_scores]
tensor_dict.pop(fields.InputDataFields.multiclass_scores, None)
if fields.InputDataFields.groundtruth_confidences in tensor_dict:
groundtruth_confidences = tensor_dict[
fields.InputDataFields.groundtruth_confidences]
# Map the confidences to the one-hot encoding of classes
tensor_dict[fields.InputDataFields.groundtruth_confidences] = (
tf.reshape(groundtruth_confidences, [-1, 1]) *
tensor_dict[fields.InputDataFields.groundtruth_classes])
else:
groundtruth_confidences = tf.ones_like(
zero_indexed_groundtruth_classes, dtype=tf.float32)
tensor_dict[fields.InputDataFields.groundtruth_confidences] = (
tensor_dict[fields.InputDataFields.groundtruth_classes])
if merge_multiple_boxes:
merged_boxes, merged_classes, merged_confidences, _ = (
util_ops.merge_boxes_with_multiple_labels(
tensor_dict[fields.InputDataFields.groundtruth_boxes],
zero_indexed_groundtruth_classes,
groundtruth_confidences,
num_classes))
merged_classes = tf.cast(merged_classes, tf.float32)
tensor_dict[fields.InputDataFields.groundtruth_boxes] = merged_boxes
tensor_dict[fields.InputDataFields.groundtruth_classes] = merged_classes
tensor_dict[fields.InputDataFields.groundtruth_confidences] = (
merged_confidences)
if fields.InputDataFields.groundtruth_boxes in tensor_dict:
tensor_dict[fields.InputDataFields.num_groundtruth_boxes] = tf.shape(
tensor_dict[fields.InputDataFields.groundtruth_boxes])[0]
return tensor_dict
def pad_input_data_to_static_shapes(tensor_dict, max_num_boxes, num_classes,
spatial_image_shape=None):
"""Pads input tensors to static shapes.
In case num_additional_channels > 0, we assume that the additional channels
have already been concatenated to the base image.
Args:
tensor_dict: Tensor dictionary of input data
max_num_boxes: Max number of groundtruth boxes needed to compute shapes for
padding.
num_classes: Number of classes in the dataset needed to compute shapes for
padding.
spatial_image_shape: A list of two integers of the form [height, width]
containing expected spatial shape of the image.
Returns:
A dictionary keyed by fields.InputDataFields containing padding shapes for
tensors in the dataset.
Raises:
ValueError: If groundtruth classes is neither rank 1 nor rank 2, or if we
detect that additional channels have not been concatenated yet.
"""
if not spatial_image_shape or spatial_image_shape == [-1, -1]:
height, width = None, None
else:
height, width = spatial_image_shape # pylint: disable=unpacking-non-sequence
num_additional_channels = 0
if fields.InputDataFields.image_additional_channels in tensor_dict:
num_additional_channels = tensor_dict[
fields.InputDataFields.image_additional_channels].shape[2].value
# We assume that if num_additional_channels > 0, then it has already been
# concatenated to the base image (but not the ground truth).
num_channels = 3
if fields.InputDataFields.image in tensor_dict:
num_channels = tensor_dict[fields.InputDataFields.image].shape[2].value
if num_additional_channels:
if num_additional_channels >= num_channels:
raise ValueError(
'Image must be already concatenated with additional channels.')
if (fields.InputDataFields.original_image in tensor_dict and
tensor_dict[fields.InputDataFields.original_image].shape[2].value ==
num_channels):
raise ValueError(
'Image must be already concatenated with additional channels.')
padding_shapes = {
fields.InputDataFields.image: [
height, width, num_channels
],
fields.InputDataFields.original_image_spatial_shape: [2],
fields.InputDataFields.image_additional_channels: [
height, width, num_additional_channels
],
fields.InputDataFields.source_id: [],
fields.InputDataFields.filename: [],
fields.InputDataFields.key: [],
fields.InputDataFields.groundtruth_difficult: [max_num_boxes],
fields.InputDataFields.groundtruth_boxes: [max_num_boxes, 4],
fields.InputDataFields.groundtruth_classes: [max_num_boxes, num_classes],
fields.InputDataFields.groundtruth_instance_masks: [
max_num_boxes, height, width
],
fields.InputDataFields.groundtruth_is_crowd: [max_num_boxes],
fields.InputDataFields.groundtruth_group_of: [max_num_boxes],
fields.InputDataFields.groundtruth_area: [max_num_boxes],
fields.InputDataFields.groundtruth_weights: [max_num_boxes],
fields.InputDataFields.groundtruth_confidences: [
max_num_boxes, num_classes
],
fields.InputDataFields.num_groundtruth_boxes: [],
fields.InputDataFields.groundtruth_label_types: [max_num_boxes],
fields.InputDataFields.groundtruth_label_weights: [max_num_boxes],
fields.InputDataFields.true_image_shape: [3],
fields.InputDataFields.groundtruth_image_classes: [num_classes],
fields.InputDataFields.groundtruth_image_confidences: [num_classes],
}
if fields.InputDataFields.original_image in tensor_dict:
padding_shapes[fields.InputDataFields.original_image] = [
height, width, tensor_dict[fields.InputDataFields.
original_image].shape[2].value
]
if fields.InputDataFields.groundtruth_keypoints in tensor_dict:
tensor_shape = (
tensor_dict[fields.InputDataFields.groundtruth_keypoints].shape)
padding_shape = [max_num_boxes, tensor_shape[1].value,
tensor_shape[2].value]
padding_shapes[fields.InputDataFields.groundtruth_keypoints] = padding_shape
if fields.InputDataFields.groundtruth_keypoint_visibilities in tensor_dict:
tensor_shape = tensor_dict[fields.InputDataFields.
groundtruth_keypoint_visibilities].shape
padding_shape = [max_num_boxes, tensor_shape[1].value]
padding_shapes[fields.InputDataFields.
groundtruth_keypoint_visibilities] = padding_shape
padded_tensor_dict = {}
for tensor_name in tensor_dict:
padded_tensor_dict[tensor_name] = shape_utils.pad_or_clip_nd(
tensor_dict[tensor_name], padding_shapes[tensor_name])
# Make sure that the number of groundtruth boxes now reflects the
# padded/clipped tensors.
if fields.InputDataFields.num_groundtruth_boxes in padded_tensor_dict:
padded_tensor_dict[fields.InputDataFields.num_groundtruth_boxes] = (
tf.minimum(
padded_tensor_dict[fields.InputDataFields.num_groundtruth_boxes],
max_num_boxes))
return padded_tensor_dict
def augment_input_data(tensor_dict, data_augmentation_options):
"""Applies data augmentation ops to input tensors.
Args:
tensor_dict: A dictionary of input tensors keyed by fields.InputDataFields.
data_augmentation_options: A list of tuples, where each tuple contains a
function and a dictionary that contains arguments and their values.
Usually, this is the output of core/preprocessor.build.
Returns:
A dictionary of tensors obtained by applying data augmentation ops to the
input tensor dictionary.
"""
tensor_dict[fields.InputDataFields.image] = tf.expand_dims(
tf.to_float(tensor_dict[fields.InputDataFields.image]), 0)
include_instance_masks = (fields.InputDataFields.groundtruth_instance_masks
in tensor_dict)
include_keypoints = (fields.InputDataFields.groundtruth_keypoints
in tensor_dict)
include_label_weights = (fields.InputDataFields.groundtruth_weights
in tensor_dict)
include_label_confidences = (fields.InputDataFields.groundtruth_confidences
in tensor_dict)
include_multiclass_scores = (fields.InputDataFields.multiclass_scores in
tensor_dict)
tensor_dict = preprocessor.preprocess(
tensor_dict, data_augmentation_options,
func_arg_map=preprocessor.get_default_func_arg_map(
include_label_weights=include_label_weights,
include_label_confidences=include_label_confidences,
include_multiclass_scores=include_multiclass_scores,
include_instance_masks=include_instance_masks,
include_keypoints=include_keypoints))
tensor_dict[fields.InputDataFields.image] = tf.squeeze(
tensor_dict[fields.InputDataFields.image], axis=0)
return tensor_dict
def _get_labels_dict(input_dict):
"""Extracts labels dict from input dict."""
required_label_keys = [
fields.InputDataFields.num_groundtruth_boxes,
fields.InputDataFields.groundtruth_boxes,
fields.InputDataFields.groundtruth_classes,
fields.InputDataFields.groundtruth_weights,
]
labels_dict = {}
for key in required_label_keys:
labels_dict[key] = input_dict[key]
optional_label_keys = [
fields.InputDataFields.groundtruth_confidences,
fields.InputDataFields.groundtruth_keypoints,
fields.InputDataFields.groundtruth_instance_masks,
fields.InputDataFields.groundtruth_area,
fields.InputDataFields.groundtruth_is_crowd,
fields.InputDataFields.groundtruth_difficult
]
for key in optional_label_keys:
if key in input_dict:
labels_dict[key] = input_dict[key]
if fields.InputDataFields.groundtruth_difficult in labels_dict:
labels_dict[fields.InputDataFields.groundtruth_difficult] = tf.cast(
labels_dict[fields.InputDataFields.groundtruth_difficult], tf.int32)
return labels_dict
def _replace_empty_string_with_random_number(string_tensor):
"""Returns string unchanged if non-empty, and random string tensor otherwise.
The random string is an integer 0 and 2**63 - 1, casted as string.
Args:
string_tensor: A tf.tensor of dtype string.
Returns:
out_string: A tf.tensor of dtype string. If string_tensor contains the empty
string, out_string will contain a random integer casted to a string.
Otherwise string_tensor is returned unchanged.
"""
empty_string = tf.constant('', dtype=tf.string, name='EmptyString')
random_source_id = tf.as_string(
tf.random_uniform(shape=[], maxval=2**63 - 1, dtype=tf.int64))
out_string = tf.cond(
tf.equal(string_tensor, empty_string),
true_fn=lambda: random_source_id,
false_fn=lambda: string_tensor)
return out_string
def _get_features_dict(input_dict):
"""Extracts features dict from input dict."""
source_id = _replace_empty_string_with_random_number(
input_dict[fields.InputDataFields.source_id])
hash_from_source_id = tf.string_to_hash_bucket_fast(source_id, HASH_BINS)
features = {
fields.InputDataFields.image:
input_dict[fields.InputDataFields.image],
HASH_KEY: tf.cast(hash_from_source_id, tf.int32),
fields.InputDataFields.true_image_shape:
input_dict[fields.InputDataFields.true_image_shape],
fields.InputDataFields.original_image_spatial_shape:
input_dict[fields.InputDataFields.original_image_spatial_shape]
}
if fields.InputDataFields.original_image in input_dict:
features[fields.InputDataFields.original_image] = input_dict[
fields.InputDataFields.original_image]
return features
def create_train_input_fn(train_config, train_input_config,
model_config):
"""Creates a train `input` function for `Estimator`.
Args:
train_config: A train_pb2.TrainConfig.
train_input_config: An input_reader_pb2.InputReader.
model_config: A model_pb2.DetectionModel.
Returns:
`input_fn` for `Estimator` in TRAIN mode.
"""
def _train_input_fn(params=None):
"""Returns `features` and `labels` tensor dictionaries for training.
Args:
params: Parameter dictionary passed from the estimator.
Returns:
A tf.data.Dataset that holds (features, labels) tuple.
features: Dictionary of feature tensors.
features[fields.InputDataFields.image] is a [batch_size, H, W, C]
float32 tensor with preprocessed images.
features[HASH_KEY] is a [batch_size] int32 tensor representing unique
identifiers for the images.
features[fields.InputDataFields.true_image_shape] is a [batch_size, 3]
int32 tensor representing the true image shapes, as preprocessed
images could be padded.
features[fields.InputDataFields.original_image] (optional) is a
[batch_size, H, W, C] float32 tensor with original images.
labels: Dictionary of groundtruth tensors.
labels[fields.InputDataFields.num_groundtruth_boxes] is a [batch_size]
int32 tensor indicating the number of groundtruth boxes.
labels[fields.InputDataFields.groundtruth_boxes] is a
[batch_size, num_boxes, 4] float32 tensor containing the corners of
the groundtruth boxes.
labels[fields.InputDataFields.groundtruth_classes] is a
[batch_size, num_boxes, num_classes] float32 one-hot tensor of
classes.
labels[fields.InputDataFields.groundtruth_weights] is a
[batch_size, num_boxes] float32 tensor containing groundtruth weights
for the boxes.
-- Optional --
labels[fields.InputDataFields.groundtruth_instance_masks] is a
[batch_size, num_boxes, H, W] float32 tensor containing only binary
values, which represent instance masks for objects.
labels[fields.InputDataFields.groundtruth_keypoints] is a
[batch_size, num_boxes, num_keypoints, 2] float32 tensor containing
keypoints for each box.
Raises:
TypeError: if the `train_config`, `train_input_config` or `model_config`
are not of the correct type.
"""
if not isinstance(train_config, train_pb2.TrainConfig):
raise TypeError('For training mode, the `train_config` must be a '
'train_pb2.TrainConfig.')
if not isinstance(train_input_config, input_reader_pb2.InputReader):
raise TypeError('The `train_input_config` must be a '
'input_reader_pb2.InputReader.')
if not isinstance(model_config, model_pb2.DetectionModel):
raise TypeError('The `model_config` must be a '
'model_pb2.DetectionModel.')
def transform_and_pad_input_data_fn(tensor_dict):
"""Combines transform and pad operation."""
data_augmentation_options = [
preprocessor_builder.build(step)
for step in train_config.data_augmentation_options
]
data_augmentation_fn = functools.partial(
augment_input_data,
data_augmentation_options=data_augmentation_options)
model = model_builder.build(model_config, is_training=True)
image_resizer_config = config_util.get_image_resizer_config(model_config)
image_resizer_fn = image_resizer_builder.build(image_resizer_config)
transform_data_fn = functools.partial(
transform_input_data, model_preprocess_fn=model.preprocess,
image_resizer_fn=image_resizer_fn,
num_classes=config_util.get_number_of_classes(model_config),
data_augmentation_fn=data_augmentation_fn,
merge_multiple_boxes=train_config.merge_multiple_label_boxes,
retain_original_image=train_config.retain_original_images,
use_multiclass_scores=train_config.use_multiclass_scores,
use_bfloat16=train_config.use_bfloat16)
tensor_dict = pad_input_data_to_static_shapes(
tensor_dict=transform_data_fn(tensor_dict),
max_num_boxes=train_input_config.max_number_of_boxes,
num_classes=config_util.get_number_of_classes(model_config),
spatial_image_shape=config_util.get_spatial_image_size(
image_resizer_config))
return (_get_features_dict(tensor_dict), _get_labels_dict(tensor_dict))
dataset = INPUT_BUILDER_UTIL_MAP['dataset_build'](
train_input_config,
transform_input_data_fn=transform_and_pad_input_data_fn,
batch_size=params['batch_size'] if params else train_config.batch_size)
return dataset
return _train_input_fn
def create_eval_input_fn(eval_config, eval_input_config, model_config):
"""Creates an eval `input` function for `Estimator`.
Args:
eval_config: An eval_pb2.EvalConfig.
eval_input_config: An input_reader_pb2.InputReader.
model_config: A model_pb2.DetectionModel.
Returns:
`input_fn` for `Estimator` in EVAL mode.
"""
def _eval_input_fn(params=None):
"""Returns `features` and `labels` tensor dictionaries for evaluation.
Args:
params: Parameter dictionary passed from the estimator.
Returns:
A tf.data.Dataset that holds (features, labels) tuple.
features: Dictionary of feature tensors.
features[fields.InputDataFields.image] is a [1, H, W, C] float32 tensor
with preprocessed images.
features[HASH_KEY] is a [1] int32 tensor representing unique
identifiers for the images.
features[fields.InputDataFields.true_image_shape] is a [1, 3]
int32 tensor representing the true image shapes, as preprocessed
images could be padded.
features[fields.InputDataFields.original_image] is a [1, H', W', C]
float32 tensor with the original image.
labels: Dictionary of groundtruth tensors.
labels[fields.InputDataFields.groundtruth_boxes] is a [1, num_boxes, 4]
float32 tensor containing the corners of the groundtruth boxes.
labels[fields.InputDataFields.groundtruth_classes] is a
[num_boxes, num_classes] float32 one-hot tensor of classes.
labels[fields.InputDataFields.groundtruth_area] is a [1, num_boxes]
float32 tensor containing object areas.
labels[fields.InputDataFields.groundtruth_is_crowd] is a [1, num_boxes]
bool tensor indicating if the boxes enclose a crowd.
labels[fields.InputDataFields.groundtruth_difficult] is a [1, num_boxes]
int32 tensor indicating if the boxes represent difficult instances.
-- Optional --
labels[fields.InputDataFields.groundtruth_instance_masks] is a
[1, num_boxes, H, W] float32 tensor containing only binary values,
which represent instance masks for objects.
Raises:
TypeError: if the `eval_config`, `eval_input_config` or `model_config`
are not of the correct type.
"""
params = params or {}
if not isinstance(eval_config, eval_pb2.EvalConfig):
raise TypeError('For eval mode, the `eval_config` must be a '
'train_pb2.EvalConfig.')
if not isinstance(eval_input_config, input_reader_pb2.InputReader):
raise TypeError('The `eval_input_config` must be a '
'input_reader_pb2.InputReader.')
if not isinstance(model_config, model_pb2.DetectionModel):
raise TypeError('The `model_config` must be a '
'model_pb2.DetectionModel.')
def transform_and_pad_input_data_fn(tensor_dict):
"""Combines transform and pad operation."""
num_classes = config_util.get_number_of_classes(model_config)
model = model_builder.build(model_config, is_training=False)
image_resizer_config = config_util.get_image_resizer_config(model_config)
image_resizer_fn = image_resizer_builder.build(image_resizer_config)
transform_data_fn = functools.partial(
transform_input_data, model_preprocess_fn=model.preprocess,
image_resizer_fn=image_resizer_fn,
num_classes=num_classes,
data_augmentation_fn=None,
retain_original_image=eval_config.retain_original_images)
tensor_dict = pad_input_data_to_static_shapes(
tensor_dict=transform_data_fn(tensor_dict),
max_num_boxes=eval_input_config.max_number_of_boxes,
num_classes=config_util.get_number_of_classes(model_config),
spatial_image_shape=config_util.get_spatial_image_size(
image_resizer_config))
return (_get_features_dict(tensor_dict), _get_labels_dict(tensor_dict))
dataset = INPUT_BUILDER_UTIL_MAP['dataset_build'](
eval_input_config,
batch_size=params['batch_size'] if params else eval_config.batch_size,
transform_input_data_fn=transform_and_pad_input_data_fn)
return dataset
return _eval_input_fn
def create_predict_input_fn(model_config, predict_input_config):
"""Creates a predict `input` function for `Estimator`.
Args:
model_config: A model_pb2.DetectionModel.
predict_input_config: An input_reader_pb2.InputReader.
Returns:
`input_fn` for `Estimator` in PREDICT mode.
"""
def _predict_input_fn(params=None):
"""Decodes serialized tf.Examples and returns `ServingInputReceiver`.
Args:
params: Parameter dictionary passed from the estimator.
Returns:
`ServingInputReceiver`.
"""
del params
example = tf.placeholder(dtype=tf.string, shape=[], name='tf_example')
num_classes = config_util.get_number_of_classes(model_config)
model = model_builder.build(model_config, is_training=False)
image_resizer_config = config_util.get_image_resizer_config(model_config)
image_resizer_fn = image_resizer_builder.build(image_resizer_config)
transform_fn = functools.partial(
transform_input_data, model_preprocess_fn=model.preprocess,
image_resizer_fn=image_resizer_fn,
num_classes=num_classes,
data_augmentation_fn=None)
decoder = tf_example_decoder.TfExampleDecoder(
load_instance_masks=False,
num_additional_channels=predict_input_config.num_additional_channels)
input_dict = transform_fn(decoder.decode(example))
images = tf.to_float(input_dict[fields.InputDataFields.image])
images = tf.expand_dims(images, axis=0)
true_image_shape = tf.expand_dims(
input_dict[fields.InputDataFields.true_image_shape], axis=0)
return tf.estimator.export.ServingInputReceiver(
features={
fields.InputDataFields.image: images,
fields.InputDataFields.true_image_shape: true_image_shape},
receiver_tensors={SERVING_FED_EXAMPLE_KEY: example})
return _predict_input_fn
|