File size: 5,158 Bytes
9a393e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for box_coder_builder."""
import tensorflow as tf
from google.protobuf import text_format
from object_detection.box_coders import faster_rcnn_box_coder
from object_detection.box_coders import keypoint_box_coder
from object_detection.box_coders import mean_stddev_box_coder
from object_detection.box_coders import square_box_coder
from object_detection.builders import box_coder_builder
from object_detection.protos import box_coder_pb2
class BoxCoderBuilderTest(tf.test.TestCase):
def test_build_faster_rcnn_box_coder_with_defaults(self):
box_coder_text_proto = """
faster_rcnn_box_coder {
}
"""
box_coder_proto = box_coder_pb2.BoxCoder()
text_format.Merge(box_coder_text_proto, box_coder_proto)
box_coder_object = box_coder_builder.build(box_coder_proto)
self.assertIsInstance(box_coder_object,
faster_rcnn_box_coder.FasterRcnnBoxCoder)
self.assertEqual(box_coder_object._scale_factors, [10.0, 10.0, 5.0, 5.0])
def test_build_faster_rcnn_box_coder_with_non_default_parameters(self):
box_coder_text_proto = """
faster_rcnn_box_coder {
y_scale: 6.0
x_scale: 3.0
height_scale: 7.0
width_scale: 8.0
}
"""
box_coder_proto = box_coder_pb2.BoxCoder()
text_format.Merge(box_coder_text_proto, box_coder_proto)
box_coder_object = box_coder_builder.build(box_coder_proto)
self.assertIsInstance(box_coder_object,
faster_rcnn_box_coder.FasterRcnnBoxCoder)
self.assertEqual(box_coder_object._scale_factors, [6.0, 3.0, 7.0, 8.0])
def test_build_keypoint_box_coder_with_defaults(self):
box_coder_text_proto = """
keypoint_box_coder {
}
"""
box_coder_proto = box_coder_pb2.BoxCoder()
text_format.Merge(box_coder_text_proto, box_coder_proto)
box_coder_object = box_coder_builder.build(box_coder_proto)
self.assertIsInstance(box_coder_object, keypoint_box_coder.KeypointBoxCoder)
self.assertEqual(box_coder_object._scale_factors, [10.0, 10.0, 5.0, 5.0])
def test_build_keypoint_box_coder_with_non_default_parameters(self):
box_coder_text_proto = """
keypoint_box_coder {
num_keypoints: 6
y_scale: 6.0
x_scale: 3.0
height_scale: 7.0
width_scale: 8.0
}
"""
box_coder_proto = box_coder_pb2.BoxCoder()
text_format.Merge(box_coder_text_proto, box_coder_proto)
box_coder_object = box_coder_builder.build(box_coder_proto)
self.assertIsInstance(box_coder_object, keypoint_box_coder.KeypointBoxCoder)
self.assertEqual(box_coder_object._num_keypoints, 6)
self.assertEqual(box_coder_object._scale_factors, [6.0, 3.0, 7.0, 8.0])
def test_build_mean_stddev_box_coder(self):
box_coder_text_proto = """
mean_stddev_box_coder {
}
"""
box_coder_proto = box_coder_pb2.BoxCoder()
text_format.Merge(box_coder_text_proto, box_coder_proto)
box_coder_object = box_coder_builder.build(box_coder_proto)
self.assertTrue(
isinstance(box_coder_object,
mean_stddev_box_coder.MeanStddevBoxCoder))
def test_build_square_box_coder_with_defaults(self):
box_coder_text_proto = """
square_box_coder {
}
"""
box_coder_proto = box_coder_pb2.BoxCoder()
text_format.Merge(box_coder_text_proto, box_coder_proto)
box_coder_object = box_coder_builder.build(box_coder_proto)
self.assertTrue(
isinstance(box_coder_object, square_box_coder.SquareBoxCoder))
self.assertEqual(box_coder_object._scale_factors, [10.0, 10.0, 5.0])
def test_build_square_box_coder_with_non_default_parameters(self):
box_coder_text_proto = """
square_box_coder {
y_scale: 6.0
x_scale: 3.0
length_scale: 7.0
}
"""
box_coder_proto = box_coder_pb2.BoxCoder()
text_format.Merge(box_coder_text_proto, box_coder_proto)
box_coder_object = box_coder_builder.build(box_coder_proto)
self.assertTrue(
isinstance(box_coder_object, square_box_coder.SquareBoxCoder))
self.assertEqual(box_coder_object._scale_factors, [6.0, 3.0, 7.0])
def test_raise_error_on_empty_box_coder(self):
box_coder_text_proto = """
"""
box_coder_proto = box_coder_pb2.BoxCoder()
text_format.Merge(box_coder_text_proto, box_coder_proto)
with self.assertRaises(ValueError):
box_coder_builder.build(box_coder_proto)
if __name__ == '__main__':
tf.test.main()
|