File size: 7,123 Bytes
9a393e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""RFCN Box Predictor."""
import tensorflow as tf
from object_detection.core import box_predictor
from object_detection.utils import ops

slim = tf.contrib.slim

BOX_ENCODINGS = box_predictor.BOX_ENCODINGS
CLASS_PREDICTIONS_WITH_BACKGROUND = (
    box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND)
MASK_PREDICTIONS = box_predictor.MASK_PREDICTIONS


class RfcnBoxPredictor(box_predictor.BoxPredictor):
  """RFCN Box Predictor.

  Applies a position sensitive ROI pooling on position sensitive feature maps to
  predict classes and refined locations. See https://arxiv.org/abs/1605.06409
  for details.

  This is used for the second stage of the RFCN meta architecture. Notice that
  locations are *not* shared across classes, thus for each anchor, a separate
  prediction is made for each class.
  """

  def __init__(self,
               is_training,
               num_classes,
               conv_hyperparams_fn,
               num_spatial_bins,
               depth,
               crop_size,
               box_code_size):
    """Constructor.

    Args:
      is_training: Indicates whether the BoxPredictor is in training mode.
      num_classes: number of classes.  Note that num_classes *does not*
        include the background category, so if groundtruth labels take values
        in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
        assigned classification targets can range from {0,... K}).
      conv_hyperparams_fn: A function to construct tf-slim arg_scope with
        hyperparameters for convolutional layers.
      num_spatial_bins: A list of two integers `[spatial_bins_y,
        spatial_bins_x]`.
      depth: Target depth to reduce the input feature maps to.
      crop_size: A list of two integers `[crop_height, crop_width]`.
      box_code_size: Size of encoding for each box.
    """
    super(RfcnBoxPredictor, self).__init__(is_training, num_classes)
    self._conv_hyperparams_fn = conv_hyperparams_fn
    self._num_spatial_bins = num_spatial_bins
    self._depth = depth
    self._crop_size = crop_size
    self._box_code_size = box_code_size

  @property
  def num_classes(self):
    return self._num_classes

  def _predict(self, image_features, num_predictions_per_location,
               proposal_boxes):
    """Computes encoded object locations and corresponding confidences.

    Args:
      image_features: A list of float tensors of shape [batch_size, height_i,
      width_i, channels_i] containing features for a batch of images.
      num_predictions_per_location: A list of integers representing the number
        of box predictions to be made per spatial location for each feature map.
        Currently, this must be set to [1], or an error will be raised.
      proposal_boxes: A float tensor of shape [batch_size, num_proposals,
        box_code_size].

    Returns:
      box_encodings: A list of float tensors of shape
        [batch_size, num_anchors_i, q, code_size] representing the location of
        the objects, where q is 1 or the number of classes. Each entry in the
        list corresponds to a feature map in the input `image_features` list.
      class_predictions_with_background: A list of float tensors of shape
        [batch_size, num_anchors_i, num_classes + 1] representing the class
        predictions for the proposals. Each entry in the list corresponds to a
        feature map in the input `image_features` list.

    Raises:
      ValueError: if num_predictions_per_location is not 1 or if
        len(image_features) is not 1.
    """
    if (len(num_predictions_per_location) != 1 or
        num_predictions_per_location[0] != 1):
      raise ValueError('Currently RfcnBoxPredictor only supports '
                       'predicting a single box per class per location.')
    if len(image_features) != 1:
      raise ValueError('length of `image_features` must be 1. Found {}'.
                       format(len(image_features)))
    image_feature = image_features[0]
    num_predictions_per_location = num_predictions_per_location[0]
    batch_size = tf.shape(proposal_boxes)[0]
    num_boxes = tf.shape(proposal_boxes)[1]
    net = image_feature
    with slim.arg_scope(self._conv_hyperparams_fn()):
      net = slim.conv2d(net, self._depth, [1, 1], scope='reduce_depth')
      # Location predictions.
      location_feature_map_depth = (self._num_spatial_bins[0] *
                                    self._num_spatial_bins[1] *
                                    self.num_classes *
                                    self._box_code_size)
      location_feature_map = slim.conv2d(net, location_feature_map_depth,
                                         [1, 1], activation_fn=None,
                                         scope='refined_locations')
      box_encodings = ops.batch_position_sensitive_crop_regions(
          location_feature_map,
          boxes=proposal_boxes,
          crop_size=self._crop_size,
          num_spatial_bins=self._num_spatial_bins,
          global_pool=True)
      box_encodings = tf.squeeze(box_encodings, squeeze_dims=[2, 3])
      box_encodings = tf.reshape(box_encodings,
                                 [batch_size * num_boxes, 1, self.num_classes,
                                  self._box_code_size])

      # Class predictions.
      total_classes = self.num_classes + 1  # Account for background class.
      class_feature_map_depth = (self._num_spatial_bins[0] *
                                 self._num_spatial_bins[1] *
                                 total_classes)
      class_feature_map = slim.conv2d(net, class_feature_map_depth, [1, 1],
                                      activation_fn=None,
                                      scope='class_predictions')
      class_predictions_with_background = (
          ops.batch_position_sensitive_crop_regions(
              class_feature_map,
              boxes=proposal_boxes,
              crop_size=self._crop_size,
              num_spatial_bins=self._num_spatial_bins,
              global_pool=True))
      class_predictions_with_background = tf.squeeze(
          class_predictions_with_background, squeeze_dims=[2, 3])
      class_predictions_with_background = tf.reshape(
          class_predictions_with_background,
          [batch_size * num_boxes, 1, total_classes])

    return {BOX_ENCODINGS: [box_encodings],
            CLASS_PREDICTIONS_WITH_BACKGROUND:
            [class_predictions_with_background]}