Spaces:
Build error
Build error
File size: 5,984 Bytes
9aba307 d41e82b 9aba307 8061dc1 9aba307 8061dc1 9aba307 8061dc1 9aba307 8061dc1 9aba307 8061dc1 9aba307 8061dc1 9aba307 8061dc1 9aba307 8061dc1 37b2b22 8061dc1 37b2b22 8061dc1 37b2b22 8061dc1 37b2b22 8061dc1 37b2b22 8061dc1 37b2b22 8061dc1 37b2b22 8061dc1 37b2b22 8061dc1 37b2b22 8061dc1 37b2b22 8061dc1 37b2b22 8061dc1 37b2b22 8061dc1 37b2b22 8061dc1 37b2b22 8061dc1 37b2b22 8061dc1 37b2b22 8061dc1 37b2b22 ba074a5 37b2b22 e640827 37b2b22 e640827 37b2b22 e640827 37b2b22 e640827 37b2b22 e640827 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
"""app.py
streamlit demo of yomikata"""
from pathlib import Path
import pandas as pd
import spacy
import streamlit as st
from speach import ttlig
from yomikata import utils
from yomikata.dictionary import Dictionary
from yomikata.utils import parse_furigana
@st.cache
def add_border(html: str):
WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.5rem; padding: 1rem; margin-bottom: 1.0rem; display: inline-block">{}</div>"""
html = html.replace("\n", " ")
return WRAPPER.format(html)
def get_random_sentence():
from config.config import TEST_DATA_DIR
df = pd.read_csv(Path(TEST_DATA_DIR, "test_optimized_strict_heteronyms.csv"))
return df.sample(1).iloc[0].sentence
@st.cache
def get_dbert_prediction_and_heteronym_list(text):
from yomikata.dbert import dBert
reader = dBert()
return reader.furigana(text), reader.heteronyms
@st.cache
def get_stats():
from config import config
from yomikata.utils import load_dict
stats = load_dict(Path(config.STORES_DIR, "dbert/training_performance.json"))
global_accuracy = stats["test"]["accuracy"]
stats = stats["test"]["heteronym_performance"]
heteronyms = stats.keys()
accuracy = [stats[heteronym]["accuracy"] for heteronym in heteronyms]
readings = [
"ใ".join(
[
"{reading} ({correct}/{n})".format(
reading=reading,
correct=stats[heteronym]["readings"][reading]["found"][reading],
n=stats[heteronym]["readings"][reading]["n"],
)
for reading in stats[heteronym]["readings"].keys()
if (
stats[heteronym]["readings"][reading]["found"][reading] != 0
or reading != "<OTHER>"
)
]
)
for heteronym in heteronyms
]
# if reading != '<OTHER>'
df = pd.DataFrame({"heteronym": heteronyms, "accuracy": accuracy, "readings": readings})
df = df[df["readings"].str.contains("ใ")]
df["readings"] = df["readings"].str.replace("<OTHER>", "Other")
df = df.rename(columns={"readings": "readings (test corr./total)"})
df = df.sort_values("accuracy", ascending=False, ignore_index=True)
df.index += 1
return global_accuracy, df
@st.cache
def furigana_to_spacy(text_with_furigana):
tokens = parse_furigana(text_with_furigana)
ents = []
output_text = ""
heteronym_count = 0
for token in tokens.groups:
if isinstance(token, ttlig.RubyFrag):
if heteronym_count != 0:
output_text += ", "
ents.append(
{
"start": len(output_text),
"end": len(output_text) + len(token.text),
"label": token.furi,
}
)
output_text += token.text
heteronym_count += 1
else:
pass
return {
"text": output_text,
"ents": ents,
"title": None,
}
st.title("Yomikata: Disambiguate Japanese Heteronyms with a BERT model")
# Input text box
st.markdown("Input a Japanese sentence:")
if "default_sentence" not in st.session_state:
st.session_state.default_sentence = "ใใ{ไบบ้/ใซใใใ}ใจใใใใฎใใ? {ไบบ้/ใซใใใ}ใจใใใใฎใฏ{่ง/ใคใฎ}ใฎ{็/ใฏ}ใใชใใ{็็ฝ/ใชใพใใ}ใ{้ก/ใใ}ใ{ๆ่ถณ/ใฆใใ}ใใใใ{ไฝ/ใชใ}ใจใใใใใ{ๆฐๅณ/ใใฟ}ใฎ{ๆช/ใใ}ใใใฎใ ใใ"
input_text = st.text_area(
"Input a Japanese sentence:",
utils.remove_furigana(st.session_state.default_sentence),
label_visibility="collapsed",
)
# Yomikata prediction
dbert_prediction, heteronyms = get_dbert_prediction_and_heteronym_list(input_text)
# spacy-style output for the predictions
colors = ["#85DCDF", "#DF85DC", "#DCDF85", "#85ABDF"]
spacy_dict = furigana_to_spacy(dbert_prediction)
label_colors = {
reading: colors[i % len(colors)]
for i, reading in enumerate(set([item["label"] for item in spacy_dict["ents"]]))
}
html = spacy.displacy.render(spacy_dict, style="ent", manual=True, options={"colors": label_colors})
if len(spacy_dict["ents"]) > 0:
st.markdown("**Yomikata** found and disambiguated the following heteronyms:")
st.write(
f"{add_border(html)}",
unsafe_allow_html=True,
)
else:
st.markdown("**Yomikata** found no heteronyms in the input text.")
# Dictionary + Yomikata prediction
st.markdown("**Yomikata** can be coupled with a dictionary to get full furigana:")
dictionary = st.radio(
"It can be coupled with a dictionary",
("sudachi", "unidic", "ipadic", "juman"),
horizontal=True,
label_visibility="collapsed",
)
dictreader = Dictionary(dictionary)
dictionary_prediction = dictreader.furigana(dbert_prediction)
html = parse_furigana(dictionary_prediction).to_html()
st.write(
f"{add_border(html)}",
unsafe_allow_html=True,
)
# Dictionary alone prediction
if len(spacy_dict["ents"]) > 0:
dictionary_prediction = dictreader.furigana(utils.remove_furigana(input_text))
html = parse_furigana(dictionary_prediction).to_html()
st.markdown("Without **Yomikata** disambiguation, the dictionary would yield:")
st.write(
f"{add_border(html)}",
unsafe_allow_html=True,
)
# Randomize button
if st.button("๐ฒ Randomize the input sentence"):
st.session_state.default_sentence = get_random_sentence()
st.experimental_rerun()
# Stats section
global_accuracy, stats_df = get_stats()
st.subheader(
f"{len(stats_df)} heteronyms supported, with a global accuracy of {global_accuracy:.0%}"
)
st.dataframe(stats_df)
# Hide the footer
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|