File size: 10,507 Bytes
074f838
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9297d37
074f838
ea4d797
 
 
 
 
 
f82a1c7
 
 
 
ea4d797
f82a1c7
 
ea4d797
f82a1c7
 
 
 
 
 
 
ea4d797
f82a1c7
ea4d797
a039863
ea4d797
41123f1
ea4d797
 
f82a1c7
 
 
57c0c93
 
074f838
57c0c93
074f838
 
 
 
57c0c93
 
074f838
57c0c93
9b03d6f
074f838
 
57c0c93
105f709
 
 
72ca0f0
 
105f709
72ca0f0
105f709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57c0c93
72ca0f0
105f709
 
72ca0f0
 
105f709
 
f82a1c7
 
72ca0f0
f82a1c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6fc95e
f82a1c7
074f838
241e0dd
 
ffffc8f
f3746a4
241e0dd
3034c72
 
 
241e0dd
 
3034c72
 
b3f0412
 
241e0dd
074f838
a886e2b
074f838
 
90bd918
493605d
074f838
015b642
074f838
72275cb
074f838
 
 
 
 
 
ce0b170
 
0ea76bb
074f838
 
 
241e0dd
 
 
8f73221
241e0dd
0ea76bb
 
 
 
 
 
 
 
 
864289d
0ea76bb
074f838
 
 
015b642
a886e2b
ce0b170
957bf1b
72ca0f0
 
105f709
72ca0f0
864289d
105f709
074f838
 
0ea76bb
a886e2b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import urllib.request
import fitz
import re
import numpy as np
import tensorflow_hub as hub
import openai
import gradio as gr
import os
from sklearn.neighbors import NearestNeighbors

def download_pdf(url, output_path):
    urllib.request.urlretrieve(url, output_path)


def preprocess(text):
    text = text.replace('\n', ' ')
    text = re.sub('\s+', ' ', text)
    return text


def pdf_to_text(path, start_page=1, end_page=None):
    doc = fitz.open(path)
    total_pages = doc.page_count

    if end_page is None:
        end_page = total_pages

    text_list = []

    for i in range(start_page-1, end_page):
        text = doc.load_page(i).get_text("text")
        text = preprocess(text)
        text_list.append(text)

    doc.close()
    return text_list


def text_to_chunks(texts, word_length=150, start_page=1):
    text_toks = [t.split(' ') for t in texts]
    page_nums = []
    chunks = []
    
    for idx, words in enumerate(text_toks):
        for i in range(0, len(words), word_length):
            chunk = words[i:i+word_length]
            if (i+word_length) > len(words) and (len(chunk) < word_length) and (
                len(text_toks) != (idx+1)):
                text_toks[idx+1] = chunk + text_toks[idx+1]
                continue
            chunk = ' '.join(chunk).strip()
            chunk = f'[Page no. {idx+start_page}]' + ' ' + '"' + chunk + '"'
            chunks.append(chunk)
    return chunks


class SemanticSearch:
    
    def __init__(self):
        self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
        self.fitted = False
    
    
    def fit(self, data, batch=1000, n_neighbors=5):
        self.data = data
        self.embeddings = self.get_text_embedding(data, batch=batch)
        n_neighbors = min(n_neighbors, len(self.embeddings))
        self.nn = NearestNeighbors(n_neighbors=n_neighbors)
        self.nn.fit(self.embeddings)
        self.fitted = True
    
    
    def __call__(self, text, return_data=True):
        inp_emb = self.use([text])
        neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]
        
        if return_data:
            return [self.data[i] for i in neighbors]
        else:
            return neighbors
    
    
    def get_text_embedding(self, texts, batch=1000):
        embeddings = []
        for i in range(0, len(texts), batch):
            text_batch = texts[i:(i+batch)]
            emb_batch = self.use(text_batch)
            embeddings.append(emb_batch)
        embeddings = np.vstack(embeddings)
        return embeddings



def load_recommender(path, start_page=1):
    global recommender
    texts = pdf_to_text(path, start_page=start_page)
    chunks = text_to_chunks(texts, start_page=start_page)
    recommender.fit(chunks)
    return 'Corpus Loaded.'

def generate_text(openAI_key, prompt, model="gpt-3.5-turbo"):
    openai.api_key = openAI_key
    temperature=0.7
    max_tokens=256
    top_p=1
    frequency_penalty=0
    presence_penalty=0

    if model == "text-davinci-003":
        completions = openai.Completion.create(
            engine=model,
            prompt=prompt,
            max_tokens=max_tokens,
            n=1,
            stop=None,
            temperature=temperature,
        )
        message = completions.choices[0].text
    else:
        message = openai.ChatCompletion.create(
            model=model,
            messages=[
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "assistant", "content": "Here is some initial assistant message."},
                {"role": "user", "content": prompt}
            ],
            temperature=.3,
            max_tokens=max_tokens,
            top_p=top_p,
            frequency_penalty=frequency_penalty,
            presence_penalty=presence_penalty,
        ).choices[0].message['content']
    return message

  
def generate_answer(question, openAI_key, model):
    topn_chunks = recommender(question)
    prompt = 'search results:\n\n'
    for c in topn_chunks:
        prompt += c + '\n\n'
        
    prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\
              "Cite each reference using [ Page Number] notation. "\
              "Only answer what is asked. The answer should be short and concise. \n\nQuery: "
    
    prompt += f"{question}\nAnswer:"
    answer = generate_text(openAI_key, prompt, model)
    return answer


def question_answer(chat_history, url, file, question, openAI_key, model):
    try:
        if openAI_key.strip()=='':
            return '[ERROR]: Please enter your Open AI Key. Get your key here : https://platform.openai.com/account/api-keys'
        if url.strip() == '' and file is None:
            return '[ERROR]: Both URL and PDF is empty. Provide at least one.'
        if url.strip() != '' and file is not None:
            return '[ERROR]: Both URL and PDF is provided. Please provide only one (either URL or PDF).'
        if model is None or model =='':
            return '[ERROR]: You have not selected any model. Please choose an LLM model.'
        if url.strip() != '':
            glob_url = url
            download_pdf(glob_url, 'corpus.pdf')
            load_recommender('corpus.pdf')
        else:
            old_file_name = file.name
            file_name = file.name
            file_name = file_name[:-12] + file_name[-4:]
            os.rename(old_file_name, file_name)
            load_recommender(file_name)
        if question.strip() == '':
            return '[ERROR]: Question field is empty'
        if model == "text-davinci-003" or model == "gpt-4" or model == "gpt-4-32k":
            answer = generate_answer_text_davinci_003(question, openAI_key)
        else:
            answer = generate_answer(question, openAI_key, model)
        chat_history.append([question, answer])
        return chat_history
    except openai.error.InvalidRequestError as e:
        return f'[ERROR]: Either you do not have access to GPT4 or you have exhausted your quota!'



def generate_text_text_davinci_003(openAI_key,prompt, engine="text-davinci-003"):
    openai.api_key = openAI_key
    completions = openai.Completion.create(
        engine=engine,
        prompt=prompt,
        max_tokens=512,
        n=1,
        stop=None,
        temperature=0.7,
    )
    message = completions.choices[0].text
    return message


def generate_answer_text_davinci_003(question,openAI_key):
    topn_chunks = recommender(question)
    prompt = ""
    prompt += 'search results:\n\n'
    for c in topn_chunks:
        prompt += c + '\n\n'
        
    prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\
              "Cite each reference using [ Page Number] notation (every result has this number at the beginning). "\
              "Citation should be done at the end of each sentence. If the search results mention multiple subjects "\
              "with the same name, create separate answers for each. Only include information found in the results and "\
              "don't add any additional information. Make sure the answer is correct and don't output false content. "\
              "If the text does not relate to the query, simply state 'Found Nothing'. Ignore outlier "\
              "search results which has nothing to do with the question. Only answer what is asked. The "\
              "answer should be short and concise. \n\nQuery: {question}\nAnswer: "
    
    prompt += f"Query: {question}\nAnswer:"
    answer = generate_text_text_davinci_003(openAI_key, prompt,"text-davinci-003")
    return answer

# pre-defined questions
questions = [
    "What did the study investigate?",
    "Can you provide a summary of this paper?",
    "what are the methodologies used in this study?",
    "what are the data intervals used in this study? Give me the start dates and end dates?",
    "what are the main limitations of this study?",
    "what are the main shortcomings of this study?",
    "what are the main findings of the study?",
    "what are the main results of the study?",
    "what are the main contributions of this study?",
    "what is the conclusion of this paper?",
    "what are the input features used in this study?",
    "what is the dependent variable in this study?",
]


recommender = SemanticSearch()

title = 'PDF GPT Turbo'
description = """ PDF GPT Turbo allows you to chat with your PDF files. It gives hallucination free response even cites the page number in square brackets([Page No.]) where the information is located, adding credibility to the responses."""

with gr.Blocks(css="""#chatbot { font-size: 14px; min-height: 1200; }""") as demo:

    gr.Markdown(f'<center><h3>{title}</h3></center>')
    gr.Markdown(description)

    with gr.Row():
        
        with gr.Group():
            gr.Markdown(f'<p style="text-align:center">Get your Open AI API key <a href="https://platform.openai.com/account/api-keys">here</a></p>')
            with gr.Accordion("API Key"):
                openAI_key = gr.Textbox(label='Enter your OpenAI API key here', password=True)
            url = gr.Textbox(label='Enter PDF URL here   (Example: https://arxiv.org/pdf/1706.06722.pdf )')
            gr.Markdown("<center><h4>OR<h4></center>")
            file = gr.File(label='Upload your PDF/ Research Paper / Book here', file_types=['.pdf'])
            question = gr.Textbox(label='Enter your question here')
            gr.Examples(
                [[q] for q in questions],
                inputs=[question],
                label="PRE-DEFINED QUESTIONS: Click on a question to auto-fill the input box, then press Enter!",
            )
            model = gr.Radio([
                'gpt-3.5-turbo', 
                'gpt-3.5-turbo-16k', 
                'gpt-3.5-turbo-0613', 
                'gpt-3.5-turbo-16k-0613', 
                'text-davinci-003',
                'gpt-4',
                'gpt-4-32k'
            ], label='Select Model', default='gpt-3.5-turbo')
            btn = gr.Button(value='Submit')

            btn.style(full_width=True)

        with gr.Group():
            chatbot = gr.Chatbot(placeholder="Chat History", label="Chat History", lines=50, elem_id="chatbot")



    # Bind the click event of the button to the question_answer function
    btn.click(
        question_answer,
        inputs=[chatbot, url, file, question, openAI_key, model],
        outputs=[chatbot],
    )

demo.launch()