File size: 9,333 Bytes
606cbf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import pandas as pd
import numpy as np
from neuralprophet import NeuralProphet
from neuralprophet import set_random_seed
import matplotlib.pyplot as plt
import streamlit as st
from datetime import datetime as dt
# import os
# os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

st.title('Time Series Forecasting with Neural Prophet')
option=st.selectbox('Choose from the following',['Forecasting without events','Forecasting with events'])

# try:
uploaded_file = st.sidebar.file_uploader("Upload your CSV file", type=["csv"])
@st.cache_data
def read_file(uploaded_file):
    data2=pd.read_csv(uploaded_file)
    return data2

df=read_file(uploaded_file)

##################################### Option 1 #####################################
if option=='Forecasting without events':

    daily_seasonality_btn = st.sidebar.select_slider('Daily Seasonality',options=[True, False],value=False)
    weekly_seasonality_btn = st.sidebar.select_slider('Weekly Seasonality',options=[True, False],value=True)
    yearly_seasonality_btn = st.sidebar.select_slider('Yearly Seasonality',options=[True, False],value=True)
    n_hist_pred_btn=st.sidebar.number_input('No. of Historical Data Points',0,360,30)
    epochs_btn=st.sidebar.number_input('Epochs',1,20,5)
    n_hidden_layers_btn=st.sidebar.number_input('No. of Hidden Layers',1,5,1)
    loss_fn_btn=st.sidebar.selectbox('Loss Function',['MAE','MSE','Huber'])
    seasonality_mode_btn=st.sidebar.selectbox('Seasonality Mode',['Additive','Multiplicative'])
    n_change_points_btn=st.sidebar.number_input('No. of Trend Change Points',0,360,30)

    with st.expander("Select Date & Observed Value",expanded=True):
        c1, c2 = st.columns((1, 1))
        x=c1.selectbox('Date',df.columns)
        ycols=[cols for cols in df.columns if cols!=df.columns[0] and df.dtypes[cols]!='object']
        y=c2.selectbox('Observed Value',ycols)

    with st.expander("Choose the Forecast Period with its Frequency"):
        c8, c9 = st.columns((1, 1))
        periods=int(c8.number_input('Forecast Period',0,365,60))
        freq=c9.selectbox('Frequency',["D","M","Y","s","min","H"])

    df1=df[[x,y]]
    df['ds'],df['y']=df[x],df[y]
    df=df[['ds','y']]
    df.dropna(inplace=True)
    df.drop_duplicates(subset=['ds'],inplace=True)
    df['ds']=pd.to_datetime(df['ds'])
    df.sort_values(by=['ds'],inplace=True)
    df=df.reset_index(drop=True)

    st.header('Dataset')
    st.dataframe(df1.head())
    rmp=st.radio('Run Model',['n','y'])

    if rmp=='y':
        set_random_seed(40)
        m = NeuralProphet(n_changepoints=n_change_points_btn,daily_seasonality=daily_seasonality_btn,weekly_seasonality=weekly_seasonality_btn,yearly_seasonality=yearly_seasonality_btn,seasonality_mode=seasonality_mode_btn,num_hidden_layers=n_hidden_layers_btn,loss_func=loss_fn_btn,epochs=epochs_btn,)
        # split into train & test dataset
        df_train, df_test = m.split_df(df, freq=freq,valid_p=0.2)
        train_metrics = m.fit(df_train, freq=freq,)
        test_metrics = m.test(df_test,)

        import warnings
        warnings.filterwarnings("ignore")
        future = m.make_future_dataframe(df=df, n_historic_predictions=n_hist_pred_btn,periods=periods)
        forecast = m.predict(df=future) 
        final_train_metrics=train_metrics.iloc[len(train_metrics)-1:len(train_metrics)].reset_index(drop=True)
        final_test_metrics=test_metrics.iloc[len(test_metrics)-1:len(test_metrics)].reset_index(drop=True)    

        fig = m.plot(forecast)
        fig_comp = m.plot_components(forecast)
        fig_param = m.plot_parameters()

        st.header('Train Dataset Metrics')
        st.dataframe(final_train_metrics)
        st.header('Test Dataset Metrics')
        st.dataframe(final_test_metrics)

        st.header('Forecast Values')
        st.pyplot(fig)

        st.header('Trend & Seasonality')
        st.pyplot(fig_param)
        st.dataframe(forecast)

        @st.cache_data
        def convert_df(df):
            return df.to_csv(index=False).encode('utf-8')

        # try:
        forecast_df = convert_df(forecast)
        if forecast_df is not None:
            st.download_button(label="Download data as CSV",data=forecast_df,file_name='NeuralProphet_with_events_results.csv',mime='text/csv',)
        # except:
        #     st.warning('Choose Something')

##################################### Option 2 #####################################
if option=='Forecasting with events':

    daily_seasonality_btn = st.sidebar.select_slider('Daily Seasonality',options=[True, False],value=False)
    weekly_seasonality_btn = st.sidebar.select_slider('Weekly Seasonality',options=[True, False],value=True)
    yearly_seasonality_btn = st.sidebar.select_slider('Yearly Seasonality',options=[True, False],value=True)
    n_hist_pred=st.sidebar.number_input('No. of Historical Data Points',0,360,30)
    epochs_btn=st.sidebar.number_input('Epochs',1,20,5)
    n_hidden_layers_btn=st.sidebar.number_input('No. of Hidden Layers',1,5,1)
    loss_fn_btn=st.sidebar.selectbox('Loss Function',['MAE','MSE','Huber'])
    n_change_points_btn=st.sidebar.number_input('No. of Trend Change Points',0,360,30)

    with st.expander("Select Date & Observed Value",expanded=True):
        c1, c2 = st.columns((1, 1))
        x=c1.selectbox('Date',df.columns)
        ycols=[cols for cols in df.columns if cols!=df.columns[0] and df.dtypes[cols]!='object']
        y=c2.selectbox('Observed Value',ycols)

    with st.expander("Select Event Names & their Dates"):
        c3, c4 = st.columns((1, 1))
        events1=c3.text_input(label='Event 1 Name',value='New Year Eve')
        eventd1=c3.date_input(label='Event 1 Date Range: ',value=(dt(year=1900, month=1, day=1), 
                            dt(year=2030, month=1, day=30)),)
        events2=c4.text_input(label='Event 2 Name',value='Christmas')
        eventd2=c4.date_input(label='Event 2 Date Range: ',value=(dt(year=1900, month=1, day=1), 
                            dt(year=2030, month=1, day=30)),)

    with st.expander("Select the Lower & Upper Window for the Events & Seasonality Factor"):
        c5, c6, c7 = st.columns((1, 1, 1))
        lw=c5.number_input('Lower Window',-10,0,-1)
        uw=c6.number_input('Upper Window',0,10,0)
        mode=c7.selectbox('Seasonality',['Additive','Multiplicative'])

    with st.expander("Choose the Forecast Period with its Frequency"):
        c8, c9 = st.columns((1, 1))
        periods=int(c8.number_input('Forecast Period',0,365,60))
        freq=c9.selectbox('Frequency',["D","M","Y","s","min","H"])

    df1=df[[x,y]]
    df['ds'],df['y']=df[x],df[y]
    df=df[['ds','y']]
    df.dropna(inplace=True)
    df.drop_duplicates(subset=['ds'],inplace=True)
    df['ds']=pd.to_datetime(df['ds'])
    df.sort_values(by=['ds'],inplace=True)
    df=df.reset_index(drop=True)

    st.header('Dataset')
    st.dataframe(df1.head())
    rmp=st.radio('Run Model',['n','y'])

    if rmp=='y':
        set_random_seed(40)
        m = NeuralProphet(n_changepoints=n_change_points_btn,daily_seasonality=daily_seasonality_btn,weekly_seasonality=weekly_seasonality_btn,yearly_seasonality=yearly_seasonality_btn,num_hidden_layers=n_hidden_layers_btn,loss_func=loss_fn_btn,epochs=epochs_btn,)
        event1 = pd.DataFrame({'event': events1,'ds': pd.to_datetime(eventd1).date})
        event2 = pd.DataFrame({'event': events2,'ds': pd.to_datetime(eventd2).date})
        if events2=='':
            enames=[events1]
            events_df = pd.concat([event1])
        else:
            enames=[events1,events2]
            events_df = pd.concat([event1,event2])

        events_df=events_df[events_df['event']!='']
        for i in range(len(enames)):
            if enames[i]!='':
                m=m.add_events([enames[i]],lower_window=lw,upper_window=uw,mode=mode)
        history_df = m.create_df_with_events(df, events_df)
        metrics=m.fit(history_df, freq=freq,)
        import warnings
        warnings.filterwarnings("ignore")            
        future = m.make_future_dataframe(df=history_df, events_df=events_df,n_historic_predictions=n_hist_pred,periods=periods)
        forecast = m.predict(df=future) 
        fig = m.plot(forecast)
        fig_comp = m.plot_components(forecast)
        fig_param = m.plot_parameters()

        final_metrics=metrics.iloc[len(metrics)-1:len(metrics)].reset_index(drop=True)

        st.header('Model Metrics')
        st.dataframe(final_metrics)

        st.header('Forecast Values')
        st.pyplot(fig)

        st.header('Trend & Seasonality')
        st.pyplot(fig_param)
        st.dataframe(forecast)

        @st.cache_data
        def convert_df(df):
            return df.to_csv(index=False).encode('utf-8')

        # try:
        forecast_df = convert_df(forecast)
        if forecast_df is not None:
            st.download_button(label="Download data as CSV",data=forecast_df,file_name='NeuralProphet_with_events_results.csv',mime='text/csv',)
        # except:
        #     st.warning('Choose Something')

#####################################################        
# except:
#     st.warning('Choose Something')

st.sidebar.write('### **About**')
st.sidebar.info(
 """
            Created by:
            [Parthasarathy Ramamoorthy](https://www.linkedin.com/in/parthasarathyr97/) (Data Scientist @ Walmart Global Tech)
        """)