File size: 15,499 Bytes
e37bd67
5b49f28
8c02e1d
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a13129
6b4235a
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dddd5f
3242b28
 
1dddd5f
3242b28
 
5b49f28
 
3a4de36
4191c16
 
3242b28
 
 
 
 
 
 
 
938e515
3242b28
2070278
8c02e1d
 
938e515
 
 
 
8c02e1d
0246478
 
5ca0873
d3da15b
3242b28
8c02e1d
 
 
 
 
 
 
3242b28
 
 
 
938e515
45cc2fd
ab2e314
3242b28
ab2e314
 
 
 
 
 
 
 
 
45cc2fd
ab2e314
45cc2fd
ab2e314
0c774a3
5ca0873
0c774a3
 
5ca0873
ab2e314
938e515
4191c16
f639b5d
 
4191c16
3a4de36
6e68a36
5b49f28
938e515
3242b28
b7d9c38
 
595105e
 
938e515
 
6e68a36
938e515
 
 
 
3242b28
938e515
 
 
45cc2fd
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
595105e
 
 
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45cc2fd
 
 
938e515
 
ab2e314
 
 
 
f65f11f
 
ab2e314
f65f11f
 
 
 
 
 
cbe97f0
f65f11f
ab2e314
938e515
 
 
 
 
 
 
 
0246478
 
938e515
 
 
 
 
 
0246478
938e515
 
164e9d5
c58380c
 
9da72e5
8a36c33
 
938e515
 
31ccc70
 
0246478
 
938e515
ab2e314
 
 
 
938e515
 
c123434
938e515
 
 
 
 
 
 
 
 
 
ab2e314
938e515
f65f11f
 
 
 
 
 
 
 
 
 
595105e
 
2ea463e
f65f11f
938e515
2ea463e
f65f11f
595105e
 
 
938e515
 
 
 
 
 
 
 
6de0e51
f65f11f
938e515
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import spaces
import logging
import math
import gradio as gr
from PIL import Image
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.unet_hacked_tryon import UNet2DConditionModel
from transformers import (
    CLIPImageProcessor,
    CLIPVisionModelWithProjection,
    CLIPTextModel,
    CLIPTextModelWithProjection,
)
from diffusers import DDPMScheduler,AutoencoderKL
from typing import List

import torch
import os
from transformers import AutoTokenizer
import numpy as np
from utils_mask import get_mask_location
from torchvision import transforms
import apply_net
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
from torchvision.transforms.functional import to_pil_image
from src.background_processor import BackgroundProcessor

def pil_to_binary_mask(pil_image, threshold=0):
    np_image = np.array(pil_image)
    grayscale_image = Image.fromarray(np_image).convert("L")
    binary_mask = np.array(grayscale_image) > threshold
    mask = np.zeros(binary_mask.shape, dtype=np.uint8)
    for i in range(binary_mask.shape[0]):
        for j in range(binary_mask.shape[1]):
            if binary_mask[i,j] == True :
                mask[i,j] = 1
    mask = (mask*255).astype(np.uint8)
    output_mask = Image.fromarray(mask)
    return output_mask


base_path = 'yisol/IDM-VTON'
example_path = os.path.join(os.path.dirname(__file__), 'example')

unet = UNet2DConditionModel.from_pretrained(
    base_path,
    subfolder="unet",
    torch_dtype=torch.float16,
)
unet.requires_grad_(False)
tokenizer_one = AutoTokenizer.from_pretrained(
    base_path,
    subfolder="tokenizer",
    revision=None,
    use_fast=False,
)
tokenizer_two = AutoTokenizer.from_pretrained(
    base_path,
    subfolder="tokenizer_2",
    revision=None,
    use_fast=False,
)
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")

text_encoder_one = CLIPTextModel.from_pretrained(
    base_path,
    subfolder="text_encoder",
    torch_dtype=torch.float16,
)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
    base_path,
    subfolder="text_encoder_2",
    torch_dtype=torch.float16,
)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
    base_path,
    subfolder="image_encoder",
    torch_dtype=torch.float16,
    )
vae = AutoencoderKL.from_pretrained(base_path,
                                    subfolder="vae",
                                    torch_dtype=torch.float16,
)

# "stabilityai/stable-diffusion-xl-base-1.0",
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
    base_path,
    subfolder="unet_encoder",
    torch_dtype=torch.float16,
)

parsing_model = Parsing(0)
openpose_model = OpenPose(0)

UNet_Encoder.requires_grad_(False)
image_encoder.requires_grad_(False)
vae.requires_grad_(False)
unet.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
tensor_transfrom = transforms.Compose(
            [
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
    )

pipe = TryonPipeline.from_pretrained(
        base_path,
        unet=unet,
        vae=vae,
        feature_extractor= CLIPImageProcessor(),
        text_encoder = text_encoder_one,
        text_encoder_2 = text_encoder_two,
        tokenizer = tokenizer_one,
        tokenizer_2 = tokenizer_two,
        scheduler = noise_scheduler,
        image_encoder=image_encoder,
        torch_dtype=torch.float16,
)
pipe.unet_encoder = UNet_Encoder

# Standard size of shein images
#WIDTH = int(4160/5)
#HEIGHT = int(6240/5)
# Standard size on which model is trained
WIDTH = int(768)
HEIGHT = int(1024)
POSE_WIDTH = int(WIDTH/2)  # int(WIDTH/2)
POSE_HEIGHT = int(HEIGHT/2)  #int(HEIGHT/2)
ARM_WIDTH = "dc" # "hd" # hd -> full sleeve, dc for half sleeve 
CATEGORY = "upper_body" # "lower_body"

def is_cropping_required(width, height):
    # If aspect ratio is 1.5, which is same as standard 2x3 ( 768x1024 ), then no need to crop, else crop
    aspect_ratio = round(height/width, 2)
    if aspect_ratio == 2:
        return False
    return True


@spaces.GPU
def start_tryon(human_img_dict,garm_img,garment_des, background_img, is_checked,is_checked_crop,denoise_steps,seed):
    logging.info("Starting try on")
    #device = "cuda"
    device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
    
    openpose_model.preprocessor.body_estimation.model.to(device)
    pipe.to(device)
    pipe.unet_encoder.to(device)
    
    human_img_orig = human_img_dict["background"].convert("RGB")   # ImageEditor
    #human_img_orig = human_img_dict.convert("RGB")     # Image
    

    """
    # Derive HEIGHT & WIDTH such that width is not more than 1000. This will cater to both Shein images (4160x6240) of 3:4 AR and model standard images ( 768x1024 ) of 2:3 AR
    WIDTH, HEIGHT = human_img_orig.size
    division_factor = math.ceil(WIDTH/1000)
    WIDTH = int(WIDTH/division_factor)
    HEIGHT = int(HEIGHT/division_factor)
    POSE_WIDTH = int(WIDTH/2)
    POSE_HEIGHT = int(HEIGHT/2)
    """
    # is_checked_crop as True if original AR is not same as 2x3 as expected by model
    w, h = human_img_orig.size
    is_checked_crop = is_cropping_required(w, h)

    garm_img= garm_img.convert("RGB").resize((WIDTH,HEIGHT))
    if is_checked_crop:
        # This will crop the image to make it Aspect Ratio of 3 x 4. And then at the end revert it back to original dimentions
        width, height = human_img_orig.size
        target_width = int(min(width, height * (3 / 4)))
        target_height = int(min(height, width * (4 / 3)))
        left = (width - target_width) / 2
        top = (height - target_height) / 2
        right = (width + target_width) / 2
        bottom = (height + target_height) / 2
        cropped_img = human_img_orig.crop((left, top, right, bottom))
        crop_size = cropped_img.size
        human_img = cropped_img.resize((WIDTH, HEIGHT))
    else:
        human_img = human_img_orig.resize((WIDTH, HEIGHT))

    # Commenting out naize harmonization for now. We will have to integrate with Deep Learning based Harmonization methods
    # Do color transfer from background image for better image harmonization
    #if background_img:
    #    human_img = BackgroundProcessor.intensity_transfer(human_img, background_img)


    if is_checked:
        # internally openpose_model is resizing human_img to resolution 384 if not passed as input
        keypoints = openpose_model(human_img.resize((POSE_WIDTH, POSE_HEIGHT)))
        model_parse, _ = parsing_model(human_img.resize((POSE_WIDTH, POSE_HEIGHT)))
        # internally get mask location function is resizing model_parse to 384x512 if width & height not passed
        mask, mask_gray = get_mask_location(ARM_WIDTH, CATEGORY, model_parse, keypoints)
        mask = mask.resize((WIDTH, HEIGHT))
        logging.info("Mask location on model identified")
    else:
        mask = pil_to_binary_mask(human_img_dict['layers'][0].convert("RGB").resize((WIDTH, HEIGHT)))
        # mask = transforms.ToTensor()(mask)
        # mask = mask.unsqueeze(0)
    mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
    mask_gray = to_pil_image((mask_gray+1.0)/2.0)


    human_img_arg = _apply_exif_orientation(human_img.resize((POSE_WIDTH,POSE_HEIGHT)))
    human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
     
    

    args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', device))
    # verbosity = getattr(args, "verbosity", None)
    pose_img = args.func(args,human_img_arg)    
    pose_img = pose_img[:,:,::-1]    
    pose_img = Image.fromarray(pose_img).resize((WIDTH,HEIGHT))
    
    with torch.no_grad():
        # Extract the images
        with torch.cuda.amp.autocast():
            with torch.no_grad():
                prompt = "model is wearing " + garment_des
                negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
                with torch.inference_mode():
                    (
                        prompt_embeds,
                        negative_prompt_embeds,
                        pooled_prompt_embeds,
                        negative_pooled_prompt_embeds,
                    ) = pipe.encode_prompt(
                        prompt,
                        num_images_per_prompt=1,
                        do_classifier_free_guidance=True,
                        negative_prompt=negative_prompt,
                    )
                                    
                    prompt = "a photo of " + garment_des
                    negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
                    if not isinstance(prompt, List):
                        prompt = [prompt] * 1
                    if not isinstance(negative_prompt, List):
                        negative_prompt = [negative_prompt] * 1
                    with torch.inference_mode():
                        (
                            prompt_embeds_c,
                            _,
                            _,
                            _,
                        ) = pipe.encode_prompt(
                            prompt,
                            num_images_per_prompt=1,
                            do_classifier_free_guidance=False,
                            negative_prompt=negative_prompt,
                        )



                    pose_img =  tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
                    garm_tensor =  tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
                    generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
                    images = pipe(
                        prompt_embeds=prompt_embeds.to(device,torch.float16),
                        negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
                        pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
                        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
                        num_inference_steps=denoise_steps,
                        generator=generator,
                        strength = 1.0,
                        pose_img = pose_img.to(device,torch.float16),
                        text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
                        cloth = garm_tensor.to(device,torch.float16),
                        mask_image=mask,
                        image=human_img, 
                        height=HEIGHT,
                        width=WIDTH,
                        ip_adapter_image = garm_img.resize((WIDTH,HEIGHT)),
                        guidance_scale=2.0,
                    )[0]

    if is_checked_crop:
        out_img = images[0].resize(crop_size)        
        human_img_orig.paste(out_img, (int(left), int(top)))    
        final_image = human_img_orig
        # return human_img_orig, mask_gray
    else:
        final_image = images[0]
        # return images[0], mask_gray
    
    # apply background to final image
    if background_img:
       logging.info("Adding background")
       final_image = BackgroundProcessor.replace_background_with_removebg(final_image, background_img) 
    return final_image, mask_gray
    # return images[0], mask_gray

garm_list = os.listdir(os.path.join(example_path,"cloth"))
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]

human_list = os.listdir(os.path.join(example_path,"human"))
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]

human_ex_list = []
#human_ex_list = human_list_path # Image
#""" if using ImageEditor instead of Image while taking input, use this - ImageEditor
for ex_human in human_list_path:
    ex_dict= {}
    ex_dict['background'] = ex_human
    ex_dict['layers'] = None
    ex_dict['composite'] = None
    human_ex_list.append(ex_dict)
#"""
##default human


# api_open=True will allow this API to be hit using curl
image_blocks = gr.Blocks().queue(api_open=True)
with image_blocks as demo:
    gr.Markdown("## Virtual Try-On πŸ‘•πŸ‘”πŸ‘š")
    gr.Markdown("Upload an image of a person and an image of a garment ✨.")
    with gr.Row():
        with gr.Column():
            # changing from ImageEditor to Image to allow easy passing of data through API
            # instead of passing {"dictionary": <>} ( which is failing ), we can directly pass the image
            imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
            #imgs = gr.Image(sources='upload', type='pil',label='Human. Mask with pen or use auto-masking')
            with gr.Row():
                is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)",value=True)
            with gr.Row():
                is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=False)

            example = gr.Examples(
                inputs=imgs,
                examples_per_page=10,
                examples=human_ex_list
            )

        with gr.Column():
            garm_img = gr.Image(label="Garment", sources='upload', type="pil")
            with gr.Row(elem_id="prompt-container"):
                with gr.Row():
                    prompt = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", show_label=False, elem_id="prompt")
            example = gr.Examples(
                inputs=garm_img,
                examples_per_page=8,
                examples=garm_list_path)
            
        with gr.Column():
           background_img = gr.Image(label="Background", sources='upload', type="pil")

        with gr.Column():
            with gr.Row():
               image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False) 
            with gr.Row():
               masked_img = gr.Image(label="Masked image output", elem_id="masked-img", show_share_button=False) 
        """
        with gr.Column():
            # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
            masked_img = gr.Image(label="Masked image output", elem_id="masked-img", show_share_button=False)
        with gr.Column():            
            # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
            image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False)
        """



    with gr.Column():
        try_button = gr.Button(value="Try-on")
        with gr.Accordion(label="Advanced Settings", open=False):
            with gr.Row():
                denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
                seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)



    try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, background_img, is_checked,is_checked_crop, denoise_steps, seed], outputs=[image_out,masked_img], api_name='tryon')

            
image_blocks.launch()