Spaces:
Sleeping
Sleeping
File size: 1,269 Bytes
b5d07c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import streamlit as st
from utils import PrepProcesor, columns
import numpy as np
import pandas as pd
import joblib
model = joblib.load('xgbpipe.joblib')
st.title('Will you survive if you were among Titanic passengers or not :ship:')
# PassengerId,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked
passengerid = st.text_input("Input Passenger ID", '8585')
pclass = st.selectbox("Choose class", [1,2,3])
name = st.text_input("Input Passenger Name", 'Elisabeth Walton ALLEN')
sex = st.select_slider("Choose sex", ['male','female'])
age = st.slider("Choose age",0,100)
sibsp = st.slider("Choose siblings",0,10)
parch = st.slider("Choose parch",0,10)
ticket = st.text_input("Input Ticket Number", "8585")
fare = st.number_input("Input Fare Price", 0,1000)
cabin = st.text_input("Input Cabin", "C52")
embarked = st.select_slider("Did they Embark?", ['S','C','Q'])
def predict():
row = np.array([passengerid,pclass,name,sex,age,sibsp,parch,ticket,fare,cabin,embarked])
X = pd.DataFrame([row], columns = columns)
prediction = model.predict(X)
if prediction[0] == 1:
st.success('Passenger Survived :thumbsup:')
else:
st.error('Passenger did not Survive :thumbsdown:')
trigger = st.button('Predict', on_click=predict)
|