File size: 9,173 Bytes
df0629c
 
7f2a827
4c9e5cc
 
 
df0629c
 
 
 
4c9e5cc
 
df0629c
4c9e5cc
df0629c
 
 
 
 
 
 
 
4c9e5cc
 
 
 
df0629c
 
 
 
 
 
4c9e5cc
 
df0629c
 
 
7f2a827
 
4c9e5cc
a4decd8
7f2a827
4c9e5cc
a4decd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c9e5cc
a4decd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df0629c
4c9e5cc
df0629c
 
 
 
 
 
 
 
 
7f2a827
a0768ff
df0629c
a0768ff
 
 
2b9969b
a0768ff
 
7f2a827
 
 
 
 
a4decd8
7f2a827
 
 
df0629c
7f2a827
 
df0629c
a0768ff
7f2a827
4c9e5cc
1f44056
7f2a827
 
 
 
 
4c9e5cc
7f2a827
 
4c9e5cc
7f2a827
 
4c9e5cc
7f2a827
df0629c
7f2a827
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df0629c
 
7f2a827
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
import sys
import shutil
import datetime
import json
import gradio as gr

# Ensure `src` is in Python's module search path
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "src")))

from markdown_pdf import MarkdownPdf, Section
from gradio_pdf import PDF
from resume_crew.crew import ResumeCrew
from crewai.knowledge.source.pdf_knowledge_source import PDFKnowledgeSource

# Set backend directories for Hugging Face Spaces
UPLOAD_DIR = "/tmp/uploads"
OUTPUT_DIR = "/tmp/output"
os.makedirs(UPLOAD_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)

def convert_md_to_pdf(md_path: str) -> str:
    """
    Convert a local .md file to .pdf using markdown-pdf.
    Returns the resulting PDF file path, or an empty string if conversion fails.
    """
    if not os.path.isfile(md_path):
        return ""
    with open(md_path, "r", encoding="utf-8") as f:
        md_content = f.read()
    pdf_obj = MarkdownPdf(toc_level=2)
    pdf_obj.add_section(Section(md_content))
    
    pdf_path = os.path.splitext(md_path)[0] + ".pdf"
    pdf_obj.save(pdf_path)
    return pdf_path if os.path.isfile(pdf_path) else ""

def process_resume(openai_api_key, serper_api_key, model_choice, new_resume, company_name, job_url):
    """
    Processes the uploaded resume using ResumeCrew and converts the output Markdown files to PDFs.
    Handles errors gracefully and stops execution upon failure.
    """
    try:
        current_date = datetime.datetime.now().strftime("%Y%m%d")
        
        # --- Ensure a resume file is uploaded ---
        if new_resume is None or not (hasattr(new_resume, "name") and new_resume.name.strip() != ""):
            return ("Error: Please upload a resume.", None, None, None, None, None, None)
        
        # --- Set API keys ---
        os.environ["OPENAI_API_KEY"] = openai_api_key or ""
        os.environ["SERPER_API_KEY"] = serper_api_key or ""

        # --- Save uploaded file ---
        try:
            if hasattr(new_resume, "read"):
                original_filename = os.path.basename(new_resume.name)
                file_data = new_resume.read()
            else:
                original_filename = os.path.basename(new_resume)
                file_data = None

            base_filename, ext = os.path.splitext(original_filename)
            new_resume_filename = f"{base_filename}_{current_date}{ext}"
            physical_path = os.path.join("knowledge", new_resume_filename)
            os.makedirs("knowledge", exist_ok=True)

            if file_data is not None:
                with open(physical_path, "wb") as f:
                    f.write(file_data)
            else:
                shutil.copy(new_resume, physical_path)
        except Exception as e:
            return (f"Error saving the uploaded resume: {str(e)}", None, None, None, None, None, None)

        # --- Initialize ResumeCrew ---
        try:
            crew_instance = ResumeCrew(
                model=model_choice,
                openai_api_key=openai_api_key,
                serper_api_key=serper_api_key,
                resume_pdf_path=new_resume_filename
            )
        except Exception as e:
            return (f"Error initializing ResumeCrew: {str(e)}", None, None, None, None, None, None)

        # --- Run the resume processing ---
        try:
            crew_instance.crew().kickoff(inputs={'job_url': job_url, 'company_name': company_name})
        except Exception as e:
            return (f"Error during resume processing: {str(e)}", None, None, None, None, None, None)

        # --- Retrieve output files ---
        try:
            job_analysis_path = os.path.join("output", "job_analysis.json")
            with open(job_analysis_path, "r") as f:
                job_data = json.load(f)
            position_name = job_data.get("job_title", "position")
        except Exception:
            position_name = "position"

        optimized_resume_path = os.path.join("output", "optimized_resume.md")
        candidate_name = "candidate"
        try:
            with open(optimized_resume_path, "r") as f:
                first_line = f.readline()
                if first_line.startswith("#"):
                    candidate_name = first_line.lstrip("#").strip().replace(" ", "_")
        except Exception:
            candidate_name = "candidate"

        # --- Create the output folder ---
        try:
            folder_name = f"{company_name}_{position_name}_{candidate_name}_{current_date}"
            new_output_dir = os.path.join("output", folder_name)
            os.makedirs(new_output_dir, exist_ok=True)

            for filename in os.listdir("output"):
                file_path = os.path.join("output", filename)
                if file_path == new_output_dir:
                    continue
                if filename.endswith(".json") or filename.endswith(".md"):
                    if os.path.isfile(file_path):
                        shutil.move(file_path, os.path.join(new_output_dir, filename))
        except Exception as e:
            return (f"Error organizing output files: {str(e)}", None, None, None, None, None, None)

        # --- Convert Markdown to PDF ---
        def md_to_pdf_in_dir(md_filename):
            try:
                md_path = os.path.join(new_output_dir, md_filename)
                if os.path.isfile(md_path):
                    return convert_md_to_pdf(md_path)
                return ""
            except Exception as e:
                return f"Error converting {md_filename} to PDF: {str(e)}"

        pdf_opt = md_to_pdf_in_dir("optimized_resume.md")
        pdf_final = md_to_pdf_in_dir("final_report.md")
        pdf_int = md_to_pdf_in_dir("interview_questions.md")

        message = f"Processing completed using model {model_choice}. Output saved in: {new_output_dir}"

        return (message, pdf_opt, pdf_opt, pdf_final, pdf_final, pdf_int, pdf_int)

    except Exception as e:
        return (f"Unexpected error: {str(e)}", None, None, None, None, None, None)

# --- Define available models ---
model_choices = {
    "GPT-4o-mini": "gpt-4o-mini-2024-07-18",
    "GPT-4o": "gpt-4o-2024-08-06",
    "o3-mini": "o3-mini-2025-01-31",
    "o1-mini": "o1-mini-2024-09-12"
}

with gr.Blocks(css=".output-column { width: 700px; }") as demo:
    with gr.Row():
        # Left pane: Input fields
        with gr.Column(scale=1):
            gr.Markdown("## Resume Optimization System")
            gr.Markdown(
                "Create an optimized resume, job research report, and interview question sheet "
                "by simply uploading your resume, entering the company name, and providing the job posting URL. "
                "This tool leverages multi-agentic AI and web search to analyze job descriptions, research the company, and "
                "tailor your resume for better ATS compatibility and job relevance."
            )
            openai_api_key_input = gr.Textbox(label="OpenAI API Key", type="password", placeholder="Enter OpenAI API Key")
            serper_api_key_input = gr.Textbox(label="Serper API Key", type="password", placeholder="Enter Serper API Key")
            model_dropdown = gr.Dropdown(
                choices=list(model_choices.values()),
                label="Select Model",
                value="gpt-4o-2024-08-06",
                interactive=True,
                info="Select the model to use for processing."
            )
            new_resume_file = gr.File(label="Upload New Resume PDF", file_types=[".pdf"])
            company_name_text = gr.Textbox(label="Company Name", placeholder="Enter company name")
            job_url_text = gr.Textbox(label="Job URL", placeholder="Enter job posting URL")
            run_button = gr.Button("Run")

        
        # Right pane: Output display
        with gr.Column(scale=2, elem_classes="output-column"):  # Scale set to an integer to avoid warnings
            gr.Markdown("## Processing Status")
            status_output = gr.Textbox(label="Status")
            with gr.Tabs():
                with gr.Tab("Optimized Resume PDF"):
                    pdf_opt_download = gr.File(label="Download Optimized Resume")
                    pdf_opt_viewer = PDF(label="View Optimized Resume")
                with gr.Tab("Final Report PDF"):
                    pdf_final_download = gr.File(label="Download Final Report")
                    pdf_final_viewer = PDF(label="View Final Report")
                with gr.Tab("Interview Questions PDF"):
                    pdf_int_download = gr.File(label="Download Interview Questions")
                    pdf_int_viewer = PDF(label="View Interview Questions")
    
    run_button.click(
        process_resume,
        inputs=[
            openai_api_key_input,
            serper_api_key_input,
            model_dropdown,
            new_resume_file,
            company_name_text,
            job_url_text
        ],
        outputs=[
            status_output,
            pdf_opt_viewer, pdf_opt_download,
            pdf_final_viewer, pdf_final_download,
            pdf_int_viewer, pdf_int_download
        ]
    )

if __name__ == "__main__":
    demo.launch()