File size: 6,376 Bytes
c795ebb
 
 
7b5f854
c795ebb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70348f4
 
 
 
 
cd14bf0
70348f4
cd14bf0
70348f4
cd14bf0
70348f4
c795ebb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a6af66
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from transformers import RobertaTokenizerFast, AutoModelForTokenClassification
import re
import torch
from itertools import cycle

tokenizer = RobertaTokenizerFast.from_pretrained("mrfirdauss/robert-base-finetuned-cv")
model = AutoModelForTokenClassification.from_pretrained("mrfirdauss/robert-base-finetuned-cv")

id2label = {0: 'O',
     1: 'B-NAME',
     3: 'B-NATION',
     5: 'B-EMAIL',
     7: 'B-URL',
     9: 'B-CAMPUS',
     11: 'B-MAJOR',
     13: 'B-COMPANY',
     15: 'B-DESIGNATION',
     17: 'B-GPA',
     19: 'B-PHONE NUMBER',
     21: 'B-ACHIEVEMENT',
     23: 'B-EXPERIENCES DESC',
     25: 'B-SKILLS',
     27: 'B-PROJECTS',
     2: 'I-NAME',
     4: 'I-NATION',
     6: 'I-EMAIL',
     8: 'I-URL',
     10: 'I-CAMPUS',
     12: 'I-MAJOR',
     14: 'I-COMPANY',
     16: 'I-DESIGNATION',
     18: 'I-GPA',
     20: 'I-PHONE NUMBER',
     22: 'I-ACHIEVEMENT',
     24: 'I-EXPERIENCES DESC',
     26: 'I-SKILLS',
     28: 'I-PROJECTS'}

def merge_subwords(tokens, labels):
    merged_tokens = []
    merged_labels = []

    current_token = ""
    current_label = ""

    for token, label in zip(tokens, labels):
        if token.startswith("Ġ"):
            if current_token:
                # Append the accumulated subwords as a new token and label
                merged_tokens.append(current_token)
                merged_labels.append(current_label)
            # Start a new token and label
            current_token = token[1:]  # Remove the 'Ġ'
            current_label = label
        else:
            # Continue accumulating subwords into the current token
            current_token += token

    # Append the last token and label
    if current_token:
        merged_tokens.append(current_token)
        merged_labels.append(current_label)

    return merged_tokens, merged_labels

def chunked_inference(text, tokenizer, model, max_length=512):
    # Tokenize the text with truncation=False to get the full list of tokens
    tok = re.findall(r'\w+|[^\w\s]', text, re.UNICODE)
    tokens = tokenizer.tokenize(tok, is_split_into_words=True)
    # Initialize containers for tokenized inputs
    input_ids_chunks = []
    # Create chunks of tokens that fit within the model's maximum input size
    for i in range(0, len(tokens), max_length - 2):  # -2 accounts for special tokens [CLS] and [SEP]
        chunk = tokens[i:i + max_length - 2]
        # Encode the chunks. Add special tokens via the tokenizer
        chunk_ids = tokenizer.convert_tokens_to_ids(chunk)
        chunk_ids = tokenizer.build_inputs_with_special_tokens(chunk_ids)
        input_ids_chunks.append(chunk_ids)

    # Convert list of token ids into a tensor
    input_ids_chunks = [torch.tensor(chunk_ids).unsqueeze(0) for chunk_ids in input_ids_chunks]

    # Predictions container
    predictions = []

    # Process each chunk
    for input_ids in input_ids_chunks:
        attention_mask = torch.ones_like(input_ids)  # Create an attention mask for the inputs
        output = model(input_ids, attention_mask=attention_mask)
        logits = output[0] if isinstance(output, tuple) else output.logits
        predictions_chunk = torch.argmax(logits, dim=-1).squeeze(0)
        predictions.append(predictions_chunk[1:-1])

    # Optionally, you can convert predictions to labels here
    # Flatten the list of tensors into one long tensor for label mapping
    predictions = torch.cat(predictions, dim=0)
    predicted_labels = [id2label[pred.item()] for pred in predictions]
    return merge_subwords(tokens,predicted_labels)

def process_tokens(tokens, tag_prefix):
    # Process tokens to extract entities based on the tag prefix
    entities = []
    current_entity = {}
    for token, tag in tokens:
        if tag.startswith('B-') and tag.endswith(tag_prefix):
            # Start a new entity
            if current_entity:
                # Append the current entity before starting a new one
                entities.append(current_entity)
                current_entity = {}
            current_entity['text'] = token
            current_entity['type'] = tag
        elif tag.startswith('I-') and (('GPA') == tag_prefix or tag_prefix == ('URL')) and tag.endswith(tag_prefix) and current_entity:
            current_entity['text'] += '' + token
        elif tag.startswith('I-') and tag.endswith(tag_prefix) and current_entity:
            # Continue the current entity
            current_entity['text'] += ' ' + token
    # Append the last entity if there is one
    if current_entity:
        entities.append(current_entity)
    return entities

def predict(text):
    tokens, predictions = chunked_inference(text, tokenizer, model)
    data = list(zip(tokens, predictions))
    profile = {
        "name": "",
        "links": [],
        "skills": [],
        "experiences": [],
        "educations": []
    }
    profile['name'] = ' '.join([t for t, p in data if p.endswith('NAME')])

    for skills in process_tokens(data, 'SKILLS'):
      profile['skills'].append(skills['text'])
    #Links
    for links in process_tokens(data, 'URL'):
      profile['links'].append(links['text'])
    # Process experiences and education
    workzip = []
    exp = process_tokens(data, 'EXPERIENCES DESC')
    designation = process_tokens(data, 'DESIGNATION')
    comp = process_tokens(data, 'COMPANY')
    if len(exp) >= len (designation) and len(exp) >= len(comp):
        workzip = zip(cycle(designation),cycle(comp),exp)
    elif len(designation)>=len(comp):
        workzip = zip((designation),cycle(comp),cycle(exp))
    else:
        workzip = zip(cycle(designation),(comp),cycle(exp))
    for designation, company, experience_desc in workzip:
        profile['experiences'].append({
            "start": None,
            "end": None,
            "designation": designation['text'],
            "company": company['text'],  # To be filled in similarly
            "experience_description": experience_desc['text']  # To be filled in similarly
        })
    for major, gpa, campus in zip(process_tokens(data, 'MAJOR'), process_tokens(data, 'GPA'), process_tokens(data, 'CAMPUS')):
        profile['educations'].append({
            "start": None,
            "end": None,
            "major": major['text'],
            "campus": campus['text'],  # To be filled in similarly
            "GPA": gpa['text'] # To be filled in similarly
        })

    return profile