File size: 3,166 Bytes
5a7ab71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import argparse
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM
import torch
import os
import json
from tqdm import tqdm
import shortuuid
import ray

from fastchat.conversation import get_default_conv_template, compute_skip_echo_len
from fastchat.utils import disable_torch_init


def run_eval(model_path, model_id, question_file, answer_file, num_gpus):
    # split question file into num_gpus files
    ques_jsons = []
    with open(os.path.expanduser(question_file), "r") as ques_file:
        for line in ques_file:
            ques_jsons.append(line)

    chunk_size = len(ques_jsons) // num_gpus
    ans_handles = []
    for i in range(0, len(ques_jsons), chunk_size):
        ans_handles.append(
            get_model_answers.remote(
                model_path, model_id, ques_jsons[i : i + chunk_size]
            )
        )

    ans_jsons = []
    for ans_handle in ans_handles:
        ans_jsons.extend(ray.get(ans_handle))

    with open(os.path.expanduser(answer_file), "w") as ans_file:
        for line in ans_jsons:
            ans_file.write(json.dumps(line) + "\n")


@ray.remote(num_gpus=1)
@torch.inference_mode()
def get_model_answers(model_path, model_id, question_jsons):
    disable_torch_init()
    model_path = os.path.expanduser(model_path)
    tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
    model = AutoModelForCausalLM.from_pretrained(
        model_path, torch_dtype=torch.float16
    ).cuda()

    ans_jsons = []
    for i, line in enumerate(tqdm(question_jsons)):
        ques_json = json.loads(line)
        idx = ques_json["question_id"]
        qs = ques_json["text"]
        conv = get_default_conv_template(model_id).copy()
        conv.append_message(conv.roles[0], qs)
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt()
        inputs = tokenizer([prompt])
        output_ids = model.generate(
            torch.as_tensor(inputs.input_ids).cuda(),
            do_sample=True,
            temperature=0.7,
            max_new_tokens=1024,
        )
        outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
        skip_echo_len = compute_skip_echo_len(model_id, conv, prompt)

        outputs = outputs[skip_echo_len:].strip()
        ans_id = shortuuid.uuid()
        ans_jsons.append(
            {
                "question_id": idx,
                "text": outputs,
                "answer_id": ans_id,
                "model_id": model_id,
                "metadata": {},
            }
        )
    return ans_jsons


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model-path", type=str, required=True)
    parser.add_argument("--model-id", type=str, required=True)
    parser.add_argument("--question-file", type=str, required=True)
    parser.add_argument("--answer-file", type=str, default="answer.jsonl")
    parser.add_argument("--num-gpus", type=int, default=1)
    args = parser.parse_args()

    ray.init()
    run_eval(
        args.model_path,
        args.model_id,
        args.question_file,
        args.answer_file,
        args.num_gpus,
    )