File size: 18,676 Bytes
454f02d
 
 
 
2d54438
 
454f02d
 
51f950f
 
454f02d
2d54438
 
454f02d
 
 
 
2d54438
454f02d
 
 
 
 
 
 
 
 
2d54438
 
454f02d
5285893
454f02d
32a5d3a
454f02d
 
 
32a5d3a
454f02d
 
5285893
454f02d
 
 
 
 
 
 
 
 
 
69dd450
2d54438
454f02d
 
 
 
2d54438
 
454f02d
 
 
 
2d54438
 
454f02d
 
 
 
 
 
 
32a5d3a
4970ac1
454f02d
 
 
 
 
 
 
2d54438
 
 
454f02d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9747a90
454f02d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d54438
454f02d
2d54438
454f02d
 
2d54438
454f02d
 
 
9747a90
454f02d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8475f2
454f02d
 
 
 
 
 
 
 
 
 
 
 
9747a90
454f02d
9747a90
 
fa02564
9747a90
454f02d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa02564
45dafce
454f02d
fa02564
 
 
454f02d
 
fa02564
 
454f02d
 
9747a90
 
 
 
 
 
454f02d
45dafce
454f02d
 
 
 
 
 
 
576fd70
 
454f02d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9747a90
fa02564
 
 
 
 
 
 
 
 
 
9747a90
baa7dde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
979c55d
baa7dde
 
9747a90
 
 
 
45dafce
 
 
 
 
e290146
 
 
 
 
 
454f02d
 
2d54438
 
454f02d
9747a90
fa02564
 
ef20af6
fa02564
 
454f02d
2d54438
5a49361
92e4006
45dafce
5a49361
 
e290146
92e4006
bb87a96
1b76ebb
fe3d439
1b76ebb
5a49361
 
7e03c18
454f02d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9747a90
454f02d
 
 
 
 
 
 
9747a90
454f02d
 
 
 
 
 
 
 
 
 
9747a90
 
 
 
 
 
 
 
 
 
454f02d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fcba90
a2ec04c
454f02d
 
 
9747a90
454f02d
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
import argparse
from collections import defaultdict
import datetime
import json
import os
import time
import uuid

os.system("pip install --upgrade gradio")

import gradio as gr
import requests

from fastchat.conversation import (
    Conversation,
    compute_skip_echo_len,
    SeparatorStyle,
)
from fastchat.constants import LOGDIR
from fastchat.utils import (
    build_logger,
    server_error_msg,
    violates_moderation,
    moderation_msg,
)
from fastchat.serve.gradio_patch import Chatbot as grChatbot
from fastchat.serve.gradio_css import code_highlight_css


logger = build_logger("gradio_web_server", "gradio_web_server.log")

headers = {"User-Agent": "NeuralChat Client"}

no_change_btn = gr.Button.update()
enable_btn = gr.Button.update(interactive=True)
disable_btn = gr.Button.update(interactive=False)

controller_url = None
enable_moderation = False

conv_template_bf16 = Conversation(
    system="A chat between a curious human and an artificial intelligence assistant. "
           "The assistant gives helpful, detailed, and polite answers to the human's questions.",
    roles=("Human", "Assistant"),
    messages=(),
    offset=0,
    sep_style=SeparatorStyle.SINGLE,
    sep="\n",
    sep2="</s>",
)


def set_global_vars(controller_url_, enable_moderation_):
    global controller_url, enable_moderation
    controller_url = controller_url_
    enable_moderation = enable_moderation_


def get_conv_log_filename():
    t = datetime.datetime.now()
    name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
    return name


def get_model_list(controller_url):
    ret = requests.post(controller_url + "/refresh_all_workers")
    assert ret.status_code == 200
    ret = requests.post(controller_url + "/list_models")
    models = ret.json()["models"]
    logger.info(f"Models: {models}")
    return models


get_window_url_params = """
function() {
    const params = new URLSearchParams(window.location.search);
    url_params = Object.fromEntries(params);
    console.log("url_params", url_params);
    return url_params;
    }
"""


def load_demo_single(models, url_params):
    dropdown_update = gr.Dropdown.update(visible=True)
    if "model" in url_params:
        model = url_params["model"]
        if model in models:
            dropdown_update = gr.Dropdown.update(value=model, visible=True)

    state = None
    return (
        state,
        dropdown_update,
        gr.Chatbot.update(visible=True),
        gr.Textbox.update(visible=True),
        gr.Button.update(visible=True),
        gr.Row.update(visible=True),
        gr.Accordion.update(visible=True),
    )


def load_demo(url_params, request: gr.Request):
    logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
    return load_demo_single(models, url_params)


def vote_last_response(state, vote_type, model_selector, request: gr.Request):
    with open(get_conv_log_filename(), "a") as fout:
        data = {
            "tstamp": round(time.time(), 4),
            "type": vote_type,
            "model": model_selector,
            "state": state.dict(),
            "ip": request.client.host,
        }
        fout.write(json.dumps(data) + "\n")


def upvote_last_response(state, model_selector, request: gr.Request):
    logger.info(f"upvote. ip: {request.client.host}")
    vote_last_response(state, "upvote", model_selector, request)
    return ("",) + (disable_btn,) * 3


def downvote_last_response(state, model_selector, request: gr.Request):
    logger.info(f"downvote. ip: {request.client.host}")
    vote_last_response(state, "downvote", model_selector, request)
    return ("",) + (disable_btn,) * 3


def flag_last_response(state, model_selector, request: gr.Request):
    logger.info(f"flag. ip: {request.client.host}")
    vote_last_response(state, "flag", model_selector, request)
    return ("",) + (disable_btn,) * 3


def regenerate(state, request: gr.Request):
    logger.info(f"regenerate. ip: {request.client.host}")
    state.messages[-1][-1] = None
    state.skip_next = False
    return (state, state.to_gradio_chatbot(), "") + (disable_btn,) * 5


def clear_history(request: gr.Request):
    logger.info(f"clear_history. ip: {request.client.host}")
    state = None
    return (state, [], "") + (disable_btn,) * 5


def add_text(state, text, request: gr.Request):
    logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")

    if state is None:
        state = conv_template_bf16.copy()

    if len(text) <= 0:
        state.skip_next = True
        return (state, state.to_gradio_chatbot(), "") + (no_change_btn,) * 5
    if enable_moderation:
        flagged = violates_moderation(text)
        if flagged:
            logger.info(f"violate moderation. ip: {request.client.host}. text: {text}")
            state.skip_next = True
            return (state, state.to_gradio_chatbot(), moderation_msg) + (
                no_change_btn,
            ) * 5

    text = text[:1536]  # Hard cut-off
    state.append_message(state.roles[0], text)
    state.append_message(state.roles[1], None)
    state.skip_next = False
    return (state, state.to_gradio_chatbot(), "") + (disable_btn,) * 5


def post_process_code(code):
    sep = "\n```"
    if sep in code:
        blocks = code.split(sep)
        if len(blocks) % 2 == 1:
            for i in range(1, len(blocks), 2):
                blocks[i] = blocks[i].replace("\\_", "_")
        code = sep.join(blocks)
    return code


def http_bot(state, model_selector, temperature, max_new_tokens, request: gr.Request):
    logger.info(f"http_bot. ip: {request.client.host}")
    start_tstamp = time.time()
    model_name = model_selector
    temperature = float(temperature)
    max_new_tokens = int(max_new_tokens)

    if state.skip_next:
        # This generate call is skipped due to invalid inputs
        yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
        return

    if len(state.messages) == state.offset + 2:
        # First round of conversation
        new_state = conv_template_bf16.copy()
        new_state.conv_id = uuid.uuid4().hex
        new_state.model_name = state.model_name or model_selector
        new_state.append_message(new_state.roles[0], state.messages[-2][1])
        new_state.append_message(new_state.roles[1], None)
        state = new_state

    # Query worker address
    ret = requests.post(
        controller_url + "/get_worker_address", json={"model": model_name}
    )
    worker_addr = ret.json()["address"]
    logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}")

    # No available worker
    if worker_addr == "":
        state.messages[-1][-1] = server_error_msg
        yield (
            state,
            state.to_gradio_chatbot(),
            disable_btn,
            disable_btn,
            disable_btn,
            enable_btn,
            enable_btn,
        )
        return

    # Construct prompt
    prompt = state.get_prompt()
    skip_echo_len = compute_skip_echo_len(model_name, state, prompt)

    # Make requests
    pload = {
        "model": model_name,
        "prompt": prompt,
        "temperature": temperature,
        "max_new_tokens": max_new_tokens,
        "stop": "</s>"
    }
    logger.info(f"==== request ====\n{pload}")

    start_time = time.time()

    state.messages[-1][-1] = "▌"
    yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5

    try:
        # Stream output
        response = requests.post(
            controller_url + "/worker_generate_stream",
            headers=headers,
            json=pload,
            stream=True,
            timeout=20,
        )
        for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
            if chunk:
                data = json.loads(chunk.decode())
                if data["error_code"] == 0:
                    output = data["text"][skip_echo_len:].strip()
                    output = post_process_code(output)
                    state.messages[-1][-1] = output + "▌"
                    yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
                else:
                    output = data["text"] + f" (error_code: {data['error_code']})"
                    state.messages[-1][-1] = output
                    yield (state, state.to_gradio_chatbot()) + (
                        disable_btn,
                        disable_btn,
                        disable_btn,
                        enable_btn,
                        enable_btn,
                    )
                    return
                time.sleep(0.005)
    except requests.exceptions.RequestException as e:
        state.messages[-1][-1] = server_error_msg + f" (error_code: 4)"
        yield (state, state.to_gradio_chatbot()) + (
            disable_btn,
            disable_btn,
            disable_btn,
            enable_btn,
            enable_btn,
        )
        return

    finish_tstamp = time.time() - start_time
    elapsed_time = "\n✅generation elapsed time: {}s".format(round(finish_tstamp, 4))

    # elapsed_time =  "\n{}s".format(round(finish_tstamp, 4))
    # elapsed_time =  "<p class='time-style'>{}s </p>".format(round(finish_tstamp, 4))

    state.messages[-1][-1] = state.messages[-1][-1][:-1] + elapsed_time
    yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5

    logger.info(f"{output}")

    with open(get_conv_log_filename(), "a") as fout:
        data = {
            "tstamp": round(finish_tstamp, 4),
            "type": "chat",
            "model": model_name,
            "gen_params": {
                "temperature": temperature,
                "max_new_tokens": max_new_tokens,
            },
            "start": round(start_tstamp, 4),
            "finish": round(start_tstamp, 4),
            "state": state.dict(),
            "ip": request.client.host,
        }
        fout.write(json.dumps(data) + "\n")


block_css = (
    code_highlight_css
    + """
pre {
    white-space: pre-wrap;       /* Since CSS 2.1 */
    white-space: -moz-pre-wrap;  /* Mozilla, since 1999 */
    white-space: -pre-wrap;      /* Opera 4-6 */
    white-space: -o-pre-wrap;    /* Opera 7 */
    word-wrap: break-word;       /* Internet Explorer 5.5+ */
}
#notice_markdown th {
    display: none;
}

#notice_markdown {
    text-align: center;
    background: #0b5087;
    padding: 1%;
    height: 4.3rem;
    color: #fff !important;
    margin-top: 0;
}

#notice_markdown p{
    color: #fff !important;
}


#notice_markdown h1, #notice_markdown h4 {
    color: #fff;
    margin-top: 0;
}

gradio-app {
    background: linear-gradient(to bottom, #86ccf5, #3273bf) !important;
    padding: 3%;
}

.gradio-container {
    margin: 0 auto !important;
    width: 70% !important;
    padding: 0 !important;
    background: #fff !important;
    border-radius: 5px !important;
}

#chatbot {
    border-style: solid;
    overflow: visible;
    margin: 1% 4%;
    width: 90%;
    box-shadow: 0 15px 15px -5px rgba(0, 0, 0, 0.2);
    border: 1px solid #ddd;
}

#text-box-style, #btn-style {
    width: 90%;
    margin: 1% 4%;
}


.user, .bot {
    width: 80% !important;
    
}

.bot {
    white-space: pre-wrap !important;  
    line-height: 1.3 !important;
    display: flex;
    flex-direction: column;
    justify-content: flex-start;

}

#btn-send-style {
    background: rgb(0, 180, 50);
    color: #fff;
    }

#btn-list-style {
    background: #eee0;
    border: 1px solid #691ef7;
}        

.title {
    font-size: 1.5rem;
    font-weight: 700;
    color: #fff !important;
}

footer {
    display: none !important;
}

.footer {
    margin-bottom: 45px;
    margin-top: 35px;
    text-align: center;
    border-bottom: 1px solid #e5e5e5;
}

.footer>p {
    font-size: .8rem;
    display: inline-block;
    padding: 0 10px;
    transform: translateY(10px);
    background: white;
}

.acknowledgments {
     width: 80%;
    margin: 0 auto;
    margin-bottom: 3rem;
}

.img-logo-style {
    width: 3.5rem;
    float: left;
}

.img-logo-right-style {
    width: 3.5rem;
    float: right;
}

.neural-studio-img-style {
     width: 50%;
    height: 20%;
    margin: 0 auto;
}
"""
)


def build_single_model_ui(models):
 
    notice_markdown = """
<div class='title'>
 NeuralChat
</div>
 <p>deployed on 4th Gen Intel Xeon Scalable Processors codenamed Sapphire Rapids.</p>
"""

    learn_more_markdown = """<div class="footer">
                    <img src='https://i.postimg.cc/Pfv4vV6R/Microsoft-Teams-image-23.png' class='img-logo-style'/><p>Powered by <a href="https://github.com/intel/intel-extension-for-transformers" style="text-decoration: underline;" target="_blank">Intel Extension for Transformers</a> and <a href="https://github.com/intel/intel-extension-for-pytorch" style="text-decoration: underline;" target="_blank">Intel Extension for PyTorch </a>
                    </p> <img src='https://i.postimg.cc/Pfv4vV6R/Microsoft-Teams-image-23.png' class='img-logo-right-style'/>
            </div>
            <div class="acknowledgments">
            <img src="https://i.postimg.cc/cJ99RQZ1/Microsoft-Teams-image-72.png" class="neural-studio-img-style" >
                    <p><h4>Neural Studio</h4>

<a href="http://neuralstudio.intel.com/" style="text-decoration: underline;" target="_blank">Neural Studio</a> is a web service that showcases <b> AI acceleration </b> capabilities on Intel's CPU and GPU with the <b>Intel Neural Compressor.</b>

It includes demos of <b>popular AI applications </b> to demonstrate their capabilities, and NeuralChat is also included.</p>
            </div>
        """

    state = gr.State()
    notice = gr.Markdown(notice_markdown, elem_id="notice_markdown")

    with gr.Row(elem_id="model_selector_row", visible=False):
        model_selector = gr.Dropdown(
            choices=models,
            value=models[0] if len(models) > 0 else "",
            interactive=True,
            show_label=False,
        ).style(container=False)

    chatbot = grChatbot(elem_id="chatbot", visible=False).style(height=550)
    with gr.Row(elem_id="text-box-style"):
        with gr.Column(scale=20):
            textbox = gr.Textbox(
                show_label=False,
                placeholder="Enter text and press ENTER",
                visible=False,
            ).style(container=False)
        with gr.Column(scale=1, min_width=50):
            send_btn = gr.Button(value="Send", visible=False, elem_id="btn-send-style")

    with gr.Accordion("Parameters", open=False, visible=False, elem_id="btn-style") as parameter_row:
        temperature = gr.Slider(
            minimum=0.0,
            maximum=1.0,
            value=0.95,
            step=0.1,
            interactive=True,
            label="Temperature",
            visible=False,
        )
        max_output_tokens = gr.Slider(
            minimum=0,
            maximum=1024,
            value=512,
            step=64,
            interactive=True,
            label="Max output tokens",
        )


    with gr.Row(visible=False, elem_id="btn-style") as button_row:
        upvote_btn = gr.Button(value="👍  Upvote", interactive=False, visible=False, elem_id="btn-list-style")
        downvote_btn = gr.Button(value="👎  Downvote", interactive=False, visible=False, elem_id="btn-list-style")
        flag_btn = gr.Button(value="⚠️  Flag", interactive=False, visible=False, elem_id="btn-list-style")
        # stop_btn = gr.Button(value="⏹️  Stop Generation", interactive=False)
        regenerate_btn = gr.Button(value="🔄  Regenerate", interactive=False, elem_id="btn-list-style")
        clear_btn = gr.Button(value="🗑️  Clear history", interactive=False, elem_id="btn-list-style")


    gr.Markdown(learn_more_markdown)

    # Register listeners
    btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
    upvote_btn.click(
        upvote_last_response,
        [state, model_selector],
        [textbox, upvote_btn, downvote_btn, flag_btn],
    )
    downvote_btn.click(
        downvote_last_response,
        [state, model_selector],
        [textbox, upvote_btn, downvote_btn, flag_btn],
    )
    flag_btn.click(
        flag_last_response,
        [state, model_selector],
        [textbox, upvote_btn, downvote_btn, flag_btn],
    )
    regenerate_btn.click(regenerate, state, [state, chatbot, textbox] + btn_list).then(
        http_bot,
        [state, model_selector, temperature, max_output_tokens],
        [state, chatbot] + btn_list,
    )
    clear_btn.click(clear_history, None, [state, chatbot, textbox] + btn_list)

    model_selector.change(clear_history, None, [state, chatbot, textbox] + btn_list)

    textbox.submit(
        add_text, [state, textbox], [state, chatbot, textbox] + btn_list
    ).then(
        http_bot,
        [state, model_selector, temperature, max_output_tokens],
        [state, chatbot] + btn_list,
    )
    send_btn.click(
        add_text, [state, textbox], [state, chatbot, textbox] + btn_list
    ).then(
        http_bot,
        [state, model_selector, temperature, max_output_tokens],
        [state, chatbot] + btn_list,
    )

    return state, model_selector, chatbot, textbox, send_btn, button_row, parameter_row


def build_demo(models):
    with gr.Blocks(
        title="NeuralChat · Intel",
        theme=gr.themes.Base(),
        css=block_css,
    ) as demo:
        url_params = gr.JSON(visible=False)

        (
            state,
            model_selector,
            chatbot,
            textbox,
            send_btn,
            button_row,
            parameter_row,
        ) = build_single_model_ui(models)

        if model_list_mode == "once":
            demo.load(
                load_demo,
                [url_params],
                [
                    state,
                    model_selector,
                    chatbot,
                    textbox,
                    send_btn,
                    button_row,
                    parameter_row,
                ],
                _js=get_window_url_params,
            )
        else:
            raise ValueError(f"Unknown model list mode: {model_list_mode}")

    return demo


if __name__ == "__main__":

    controller_url = "http://35.172.200.58:80"
    host = "0.0.0.0"
    # port = "mlp-dgx-01.sh.intel.com"
    concurrency_count = 10
    model_list_mode = "once"
    share = False
    moderate = False

    set_global_vars(controller_url, moderate)
    models = get_model_list(controller_url)

    demo = build_demo(models)
    demo.queue(
        concurrency_count=concurrency_count, status_update_rate=10, api_open=False
    ).launch(
        server_name=host, share=share, max_threads=200
    )