File size: 4,958 Bytes
5a7ab71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Usage: deepspeed train_lora.py --deepspeed <$PATH_TO_DEEPSPEED_CONFIG>

# Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright:
#    Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.

from dataclasses import dataclass, field
import logging
import pathlib
import typing

from deepspeed import zero
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
from peft import LoraConfig, get_peft_model
import transformers
from transformers import Trainer

from fastchat.train.train import (
    DataArguments,
    ModelArguments,
    TrainingArguments,
    make_supervised_data_module,
)

from fastchat.train.llama_flash_attn_monkey_patch import (
    replace_llama_attn_with_flash_attn,
)

replace_llama_attn_with_flash_attn()


@dataclass
class LoraArguments:
    lora_r: int = 8
    lora_alpha: int = 16
    lora_dropout: float = 0.05
    lora_target_modules: typing.List[str] = field(
        default_factory=lambda: ["q_proj", "v_proj"]
    )
    lora_weight_path: str = ""
    bias: str = "none"


def maybe_zero_3(param):
    if hasattr(param, "ds_id"):
        assert param.ds_status == ZeroParamStatus.NOT_AVAILABLE
        with zero.GatheredParameters([param]):
            param = param.data.cpu().clone().detach()
    return param


# Borrowed from peft.utils.get_peft_model_state_dict
def get_peft_state_maybe_zero_3(state_dict, bias):
    if bias == "none":
        to_return = {
            k: state_dict[k].cpu().clone().detach() for k in state_dict if "lora_" in k
        }
    elif bias == "all":
        to_return = {
            k: state_dict[k] for k in state_dict if "lora_" in k or "bias" in k
        }
    elif bias == "lora_only":
        to_return = {}
        for k in state_dict:
            if "lora_" in k:
                to_return[k] = state_dict[k]
                bias_name = k.split("lora_")[0] + "bias"
                if bias_name in state_dict:
                    to_return[bias_name] = state_dict[bias_name]
    else:
        raise NotImplementedError
    to_return = {k: maybe_zero_3(v) for k, v in to_return.items()}
    return to_return


def train():
    parser = transformers.HfArgumentParser(
        (ModelArguments, DataArguments, TrainingArguments, LoraArguments)
    )
    (
        model_args,
        data_args,
        training_args,
        lora_args,
    ) = parser.parse_args_into_dataclasses()

    model = transformers.AutoModelForCausalLM.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=training_args.cache_dir,
    )
    lora_config = LoraConfig(
        r=lora_args.lora_r,
        lora_alpha=lora_args.lora_alpha,
        target_modules=lora_args.lora_target_modules,
        lora_dropout=lora_args.lora_dropout,
        bias=lora_args.bias,
        task_type="CAUSAL_LM",
    )
    model = get_peft_model(model, lora_config)
    if training_args.deepspeed is not None and training_args.local_rank == 0:
        model.print_trainable_parameters()

    if training_args.gradient_checkpointing:
        logging.warning(
            "gradient checkpointing with lora makes requires_grad "
            "incorrect and needs a monkey patch in Trainer or the "
            "wrapped model's forward. ref: "
            "https://github.com/lm-sys/FastChat/pull/138#issuecomment-1509172198"
        )

    tokenizer = transformers.AutoTokenizer.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=training_args.cache_dir,
        model_max_length=training_args.model_max_length,
        padding_side="right",
        use_fast=False,
    )
    tokenizer.pad_token = tokenizer.unk_token

    data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args)
    trainer = Trainer(
        model=model, tokenizer=tokenizer, args=training_args, **data_module
    )

    model.config.use_cache = False

    if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
        trainer.train(resume_from_checkpoint=True)
    else:
        trainer.train()
    trainer.save_state()

    # Save states. Weights might be a placeholder in zero3 and need a gather
    state_dict = get_peft_state_maybe_zero_3(model.state_dict(), lora_args.bias)
    if training_args.local_rank == 0:
        model.save_pretrained(training_args.output_dir, state_dict=state_dict)


if __name__ == "__main__":
    train()