File size: 11,224 Bytes
5a7ab71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
"""Inference for FastChat models."""
import abc
from typing import Optional
import warnings

import torch

try:
    from transformers import (
        AutoTokenizer,
        AutoModelForCausalLM,
        LlamaTokenizer,
        LlamaForCausalLM,
        AutoModel,
        AutoModelForSeq2SeqLM,
        AutoConfig,
    )
except ImportError:
    from transformers import (
        AutoTokenizer,
        AutoModelForCausalLM,
        LLaMATokenizer,
        LLamaForCausalLM,
        AutoModel,
        AutoModelForSeq2SeqLM,
        AutoConfig,
    )

from fastchat.conversation import (
    conv_templates,
    get_default_conv_template,
    compute_skip_echo_len,
    SeparatorStyle,
)
from fastchat.serve.compression import load_compress_model
from fastchat.serve.monkey_patch_non_inplace import (
    replace_llama_attn_with_non_inplace_operations,
)
from fastchat.serve.serve_chatglm import chatglm_generate_stream


def raise_warning_for_old_weights(model_path, model):
    if "vicuna" in model_path.lower():
        try:
            is_vicuna = isinstance(model, LlamaForCausalLM)
        except Exception:
            is_vicuna = isinstance(model, LLamaForCausalLM)
        if is_vicuna and model.model.vocab_size > 32000:
            warnings.warn(
                "\nYou are probably using the old Vicuna-v0 model, "
                "which will generate unexpected results with the "
                "current fschat.\nYou can try one of the following methods:\n"
                "1. Upgrade your weights to the new Vicuna-v1.1: https://github.com/lm-sys/FastChat#vicuna-weights.\n"
                "2. Use the old conversation template by `python3 -m fastchat.serve.cli --model-path /path/to/vicuna-v0 --conv-template conv_one_shot`\n"
                "3. Downgrade fschat to fschat==0.1.10 (Not recommonded).\n"
            )


def get_gpu_memory(max_gpus=None):
    gpu_memory = []
    num_gpus = (
        torch.cuda.device_count()
        if max_gpus is None
        else min(max_gpus, torch.cuda.device_count())
    )

    for gpu_id in range(num_gpus):
        with torch.cuda.device(gpu_id):
            device = torch.cuda.current_device()
            gpu_properties = torch.cuda.get_device_properties(device)
            total_memory = gpu_properties.total_memory / (1024**3)
            allocated_memory = torch.cuda.memory_allocated() / (1024**3)
            available_memory = total_memory - allocated_memory
            gpu_memory.append(available_memory)
    return gpu_memory


def load_model(
    model_path, device, num_gpus, max_gpu_memory=None, load_8bit=False, debug=False
):
    if device == "cpu":
        kwargs = {"torch_dtype": torch.float32}
    elif device == "cuda":
        kwargs = {"torch_dtype": torch.float16}
        if num_gpus == "auto":
            kwargs["device_map"] = "auto"
        else:
            num_gpus = int(num_gpus)
            if num_gpus != 1:
                kwargs["device_map"] = "auto"
                if max_gpu_memory is None:
                    kwargs[
                        "device_map"
                    ] = "sequential"  # This is important for not the same VRAM sizes
                    available_gpu_memory = get_gpu_memory(num_gpus)
                    kwargs["max_memory"] = {
                        i: str(int(available_gpu_memory[i] * 0.85)) + "GiB"
                        for i in range(num_gpus)
                    }
                else:
                    kwargs["max_memory"] = {i: max_gpu_memory for i in range(num_gpus)}
        print("init_kwargs", kwargs)
    elif device == "mps":
        kwargs = {"torch_dtype": torch.float16}
        # Avoid bugs in mps backend by not using in-place operations.
        replace_llama_attn_with_non_inplace_operations()
    else:
        raise ValueError(f"Invalid device: {device}")
    
    if load_8bit:
        if num_gpus != 1 and num_gpus != "1":
            warnings.warn("8-bit quantization is not supported for multi-gpu inference.")
        else:
            return load_compress_model(model_path=model_path, device=device, torch_dtype=kwargs["torch_dtype"])

    if "chatglm" in model_path:
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
        model = AutoModel.from_pretrained(
            model_path, trust_remote_code=True, **kwargs
        ).cuda()
    elif "google/flan-t5" in model_path:
        tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
        model = AutoModelForSeq2SeqLM.from_pretrained(
            model_path, low_cpu_mem_usage=True, **kwargs
        )
    elif "dolly" in model_path:
        tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
        model = AutoModelForCausalLM.from_pretrained(
            model_path, low_cpu_mem_usage=True, **kwargs
        )
        # 50277 means "### End"
        tokenizer.eos_token_id = 50277
    elif "pythia" in model_path or "stablelm" in model_path:
        tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
        model = AutoModelForCausalLM.from_pretrained(
            model_path, low_cpu_mem_usage=True, **kwargs
        )
    else:
        tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
        model = AutoModelForCausalLM.from_pretrained(
            model_path, low_cpu_mem_usage=True, **kwargs
        )
        raise_warning_for_old_weights(model_path, model)


    if (device == "cuda" and num_gpus == 1) or device == "mps":
        model.to(device)

    if debug:
        print(model)

    return model, tokenizer


@torch.inference_mode()
def generate_stream(
    model, tokenizer, params, device, context_len=2048, stream_interval=2
):
    prompt = params["prompt"]
    l_prompt = len(prompt)
    temperature = float(params.get("temperature", 1.0))
    max_new_tokens = int(params.get("max_new_tokens", 256))
    stop_str = params.get("stop", None)
    stop_token_ids = params.get("stop_ids", [tokenizer.eos_token_id])

    input_ids = tokenizer(prompt).input_ids
    output_ids = list(input_ids)

    max_src_len = context_len - max_new_tokens - 8
    input_ids = input_ids[-max_src_len:]

    for i in range(max_new_tokens):
        if i == 0:
            if model.config.is_encoder_decoder:
                encoder_outputs = model.encoder(
                    input_ids=torch.as_tensor([input_ids], device=device)
                )
                out = model(
                    torch.as_tensor([input_ids], device=device),
                    decoder_input_ids=torch.as_tensor(
                        [[model.generation_config.decoder_start_token_id]],
                        device=device,
                    ),
                    encoder_outputs=encoder_outputs,
                    use_cache=True,
                )
                logits = out.logits
                past_key_values = out.past_key_values
            else:
                out = model(torch.as_tensor([input_ids], device=device), use_cache=True)
                logits = out.logits
                past_key_values = out.past_key_values
        else:
            if model.config.is_encoder_decoder:
                out = model(
                    input_ids=torch.as_tensor([input_ids], device=device),
                    use_cache=True,
                    encoder_outputs=encoder_outputs,
                    decoder_input_ids=torch.as_tensor([[token]], device=device),
                    past_key_values=past_key_values,
                )
                logits = out.logits
                past_key_values = out.past_key_values
            else:
                out = model(
                    input_ids=torch.as_tensor([[token]], device=device),
                    use_cache=True,
                    past_key_values=past_key_values,
                )
                logits = out.logits
                past_key_values = out.past_key_values

        last_token_logits = logits[0][-1]

        if device == "mps":
            # Switch to CPU by avoiding some bugs in mps backend.
            last_token_logits = last_token_logits.float().to("cpu")

        if temperature < 1e-4:
            token = int(torch.argmax(last_token_logits))
        else:
            probs = torch.softmax(last_token_logits / temperature, dim=-1)
            token = int(torch.multinomial(probs, num_samples=1))

        output_ids.append(token)

        if token in stop_token_ids:
            stopped = True
        else:
            stopped = False

        if i % stream_interval == 0 or i == max_new_tokens - 1 or stopped:
            output = tokenizer.decode(output_ids, skip_special_tokens=True)
            if stop_str:
                pos = output.rfind(stop_str, l_prompt)
                if pos != -1:
                    output = output[:pos]
                    stopped = True
            yield output

        if stopped:
            break

    del past_key_values


class ChatIO(abc.ABC):
    @abc.abstractmethod
    def prompt_for_input(self, role: str) -> str:
        """Prompt for input from a role."""

    @abc.abstractmethod
    def prompt_for_output(self, role: str):
        """Prompt for output from a role."""

    @abc.abstractmethod
    def stream_output(self, output_stream, skip_echo_len: int):
        """Stream output."""


def chat_loop(
    model_path: str,
    device: str,
    num_gpus: str,
    max_gpu_memory: str,
    load_8bit: bool,
    conv_template: Optional[str],
    temperature: float,
    max_new_tokens: int,
    chatio: ChatIO,
    debug: bool,
):
    # Model
    model, tokenizer = load_model(
        model_path, device, num_gpus, max_gpu_memory, load_8bit, debug
    )
    is_chatglm = "chatglm" in str(type(model)).lower()

    # Chat
    if conv_template:
        conv = conv_templates[conv_template].copy()
    else:
        conv = get_default_conv_template(model_path).copy()

    while True:
        try:
            inp = chatio.prompt_for_input(conv.roles[0])
        except EOFError:
            inp = ""
        if not inp:
            print("exit...")
            break

        conv.append_message(conv.roles[0], inp)
        conv.append_message(conv.roles[1], None)

        if is_chatglm:
            prompt = conv.messages[conv.offset :]
            generate_stream_func = chatglm_generate_stream
        else:
            generate_stream_func = generate_stream
            prompt = conv.get_prompt()

        skip_echo_len = compute_skip_echo_len(model_path, conv, prompt)
        stop_str = (
            conv.sep
            if conv.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.BAIZE]
            else None
        )

        params = {
            "model": model_path,
            "prompt": prompt,
            "temperature": temperature,
            "max_new_tokens": max_new_tokens,
            "stop": stop_str,
        }

        chatio.prompt_for_output(conv.roles[1])
        output_stream = generate_stream_func(model, tokenizer, params, device)
        outputs = chatio.stream_output(output_stream, skip_echo_len)
        # NOTE: strip is important to align with the training data.
        conv.messages[-1][-1] = outputs.strip()

        if debug:
            print("\n", {"prompt": prompt, "outputs": outputs}, "\n")