File size: 23,862 Bytes
c9b27b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
454f02d
 
 
 
2d54438
 
454f02d
 
c9b27b0
51f950f
454f02d
2d54438
 
c9b27b0
 
 
 
 
2d54438
454f02d
 
 
 
 
2d54438
c9b27b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d54438
454f02d
5285893
454f02d
32a5d3a
454f02d
 
 
32a5d3a
454f02d
 
5285893
c9b27b0
 
 
 
 
 
 
 
 
 
69dd450
c9b27b0
 
 
 
 
 
 
 
 
cabdd91
 
 
 
 
 
 
 
 
 
c9b27b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
454f02d
 
 
 
2d54438
 
454f02d
 
 
 
2d54438
 
454f02d
c9b27b0
454f02d
 
 
32a5d3a
4970ac1
454f02d
 
 
 
 
 
 
2d54438
 
 
454f02d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9747a90
454f02d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9b27b0
454f02d
 
 
 
 
 
 
 
 
 
 
 
 
c9b27b0
454f02d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed69bd4
454f02d
 
 
 
 
ed69bd4
454f02d
 
 
 
 
 
 
 
c9b27b0
 
 
 
 
454f02d
 
 
 
 
 
c9b27b0
cabdd91
454f02d
 
 
 
c9b27b0
454f02d
c9b27b0
 
 
454f02d
c9b27b0
454f02d
c9b27b0
454f02d
2d54438
454f02d
2d54438
454f02d
 
2d54438
454f02d
 
 
c9b27b0
454f02d
 
 
 
 
c9b27b0
454f02d
 
c9b27b0
 
454f02d
c9b27b0
454f02d
c9b27b0
454f02d
 
 
 
 
 
 
 
 
 
 
 
 
 
d8475f2
454f02d
 
 
 
 
 
 
 
 
 
 
 
9747a90
454f02d
9747a90
 
fa02564
c9b27b0
 
454f02d
 
 
 
 
 
 
 
 
 
 
 
ed69bd4
454f02d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa02564
131bf4c
454f02d
fa02564
 
 
454f02d
 
fa02564
 
454f02d
 
9747a90
 
 
 
 
 
454f02d
45dafce
454f02d
 
 
 
 
 
 
576fd70
 
454f02d
 
 
 
 
 
 
 
 
 
 
24e64bf
fdce37e
 
 
 
 
 
 
 
 
 
24e64bf
 
c9b27b0
 
 
 
 
 
 
 
 
 
 
 
 
26dc491
a679693
 
 
24e64bf
454f02d
 
 
 
 
 
 
 
c9b27b0
454f02d
 
 
c9b27b0
454f02d
 
 
 
 
 
 
 
 
 
 
 
 
 
0109f0b
c9b27b0
fa02564
 
 
 
 
1ffadb3
 
fa02564
 
 
9984c00
fa02564
9747a90
baa7dde
9fd5675
baa7dde
 
 
 
 
 
 
 
 
 
 
 
0f04194
131bf4c
1ffadb3
 
0f04194
baa7dde
9747a90
 
 
 
45dafce
 
 
c9b27b0
45dafce
e290146
 
 
 
 
 
9fd5675
 
5cde62c
9984c00
9fd5675
454f02d
 
2d54438
 
454f02d
c9b27b0
fa02564
1ffadb3
24e64bf
1ffadb3
 
 
c9b27b0
 
fa02564
454f02d
c9b27b0
 
 
 
 
 
 
 
 
 
5a49361
5cde62c
 
c9b27b0
5a49361
7e03c18
454f02d
 
 
 
 
 
 
 
 
 
 
c9b27b0
454f02d
 
 
 
 
 
 
 
 
 
9747a90
454f02d
 
 
c9b27b0
454f02d
 
 
9747a90
454f02d
 
 
 
becbcb5
b31d01d
454f02d
 
 
ed69bd4
 
 
b395d47
ed69bd4
 
 
 
454f02d
9747a90
 
 
 
 
 
 
 
 
 
454f02d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed69bd4
454f02d
 
 
 
 
 
 
 
 
 
ed69bd4
454f02d
 
 
 
 
 
ed69bd4
454f02d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9b27b0
a2ec04c
c9b27b0
454f02d
 
9747a90
454f02d
 
 
 
 
 
 
 
 
c9b27b0
454f02d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
# !/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2023 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
from collections import defaultdict
import datetime
import json
import os
import time
import uuid

os.system("pip install gradio==3.34.0")

import gradio as gr
import requests

import sys
sys.path.insert(0, './')
from conversation import (
    get_conv_template,
    compute_skip_echo_len
)
from fastchat.constants import LOGDIR
from fastchat.utils import (
    build_logger,
    violates_moderation,
)

code_highlight_css = """
#chatbot .hll { background-color: #ffffcc }
#chatbot .c { color: #408080; font-style: italic }
#chatbot .err { border: 1px solid #FF0000 }
#chatbot .k { color: #008000; font-weight: bold }
#chatbot .o { color: #666666 }
#chatbot .ch { color: #408080; font-style: italic }
#chatbot .cm { color: #408080; font-style: italic }
#chatbot .cp { color: #BC7A00 }
#chatbot .cpf { color: #408080; font-style: italic }
#chatbot .c1 { color: #408080; font-style: italic }
#chatbot .cs { color: #408080; font-style: italic }
#chatbot .gd { color: #A00000 }
#chatbot .ge { font-style: italic }
#chatbot .gr { color: #FF0000 }
#chatbot .gh { color: #000080; font-weight: bold }
#chatbot .gi { color: #00A000 }
#chatbot .go { color: #888888 }
#chatbot .gp { color: #000080; font-weight: bold }
#chatbot .gs { font-weight: bold }
#chatbot .gu { color: #800080; font-weight: bold }
#chatbot .gt { color: #0044DD }
#chatbot .kc { color: #008000; font-weight: bold }
#chatbot .kd { color: #008000; font-weight: bold }
#chatbot .kn { color: #008000; font-weight: bold }
#chatbot .kp { color: #008000 }
#chatbot .kr { color: #008000; font-weight: bold }
#chatbot .kt { color: #B00040 }
#chatbot .m { color: #666666 }
#chatbot .s { color: #BA2121 }
#chatbot .na { color: #7D9029 }
#chatbot .nb { color: #008000 }
#chatbot .nc { color: #0000FF; font-weight: bold }
#chatbot .no { color: #880000 }
#chatbot .nd { color: #AA22FF }
#chatbot .ni { color: #999999; font-weight: bold }
#chatbot .ne { color: #D2413A; font-weight: bold }
#chatbot .nf { color: #0000FF }
#chatbot .nl { color: #A0A000 }
#chatbot .nn { color: #0000FF; font-weight: bold }
#chatbot .nt { color: #008000; font-weight: bold }
#chatbot .nv { color: #19177C }
#chatbot .ow { color: #AA22FF; font-weight: bold }
#chatbot .w { color: #bbbbbb }
#chatbot .mb { color: #666666 }
#chatbot .mf { color: #666666 }
#chatbot .mh { color: #666666 }
#chatbot .mi { color: #666666 }
#chatbot .mo { color: #666666 }
#chatbot .sa { color: #BA2121 }
#chatbot .sb { color: #BA2121 }
#chatbot .sc { color: #BA2121 }
#chatbot .dl { color: #BA2121 }
#chatbot .sd { color: #BA2121; font-style: italic }
#chatbot .s2 { color: #BA2121 }
#chatbot .se { color: #BB6622; font-weight: bold }
#chatbot .sh { color: #BA2121 }
#chatbot .si { color: #BB6688; font-weight: bold }
#chatbot .sx { color: #008000 }
#chatbot .sr { color: #BB6688 }
#chatbot .s1 { color: #BA2121 }
#chatbot .ss { color: #19177C }
#chatbot .bp { color: #008000 }
#chatbot .fm { color: #0000FF }
#chatbot .vc { color: #19177C }
#chatbot .vg { color: #19177C }
#chatbot .vi { color: #19177C }
#chatbot .vm { color: #19177C }
#chatbot .il { color: #666666 }
"""

server_error_msg = (
    "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
)
moderation_msg = (
    "YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES. PLEASE TRY AGAIN."
)

logger = build_logger("gradio_web_server", "gradio_web_server.log")

headers = {"User-Agent": "NeuralChat Client"}

no_change_btn = gr.Button.update()
enable_btn = gr.Button.update(interactive=True)
disable_btn = gr.Button.update(interactive=False)

controller_url = None
enable_moderation = False

# conv_template_bf16 = Conversation(
#     system="A chat between a curious human and an artificial intelligence assistant. "
#            "The assistant gives helpful, detailed, and polite answers to the human's questions.",
#     roles=("Human", "Assistant"),
#     messages=(),
#     offset=0,
#     sep_style=SeparatorStyle.SINGLE,
#     sep="\n",
#     sep2="<|endoftext|>",
# )

# conv_template_bf16 = Conversation(
#     system="",
#     roles=("### Human", "### Assistant"),
#     messages=(),
#     offset=0,
#     sep_style=SeparatorStyle.SINGLE,
#     sep="\n",
#     sep2="</s>",
# )
# conv_template_bf16 = Conversation(
#     system="",
#     roles=("", ""),
#     messages=(),
#     offset=0,
#     sep_style=SeparatorStyle.OASST_PYTHIA,
#     sep=" ",
#     sep2="<|endoftext|>",
# )

# start_message = """<|im_start|>system
# - You are a helpful assistant chatbot trained by Intel.
# - You answer questions.
# - You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
# - You are more than just an information source, you are also able to write poetry, short stories, and make jokes.<|im_end|>"""

# conv_template_bf16 = Conversation(
#     system=start_message,
#     roles=("<|im_start|>user", "<|im_start|>assistant"),
#     messages=(),
#     offset=0,
#     sep_style=SeparatorStyle.TWO,
#     sep="\n",
#     sep2="<|im_end|>",
# )

def set_global_vars(controller_url_, enable_moderation_):
    global controller_url, enable_moderation
    controller_url = controller_url_
    enable_moderation = enable_moderation_


def get_conv_log_filename():
    t = datetime.datetime.now()
    name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
    return name


def get_model_list(controller_url):
    ret = requests.post(controller_url + "/v1/models")
    models = ret.json()["models"]
    logger.info(f"Models: {models}")
    return models


get_window_url_params = """
function() {
    const params = new URLSearchParams(window.location.search);
    url_params = Object.fromEntries(params);
    console.log("url_params", url_params);
    return url_params;
    }
"""


def load_demo_single(models, url_params):
    dropdown_update = gr.Dropdown.update(visible=True)
    if "model" in url_params:
        model = url_params["model"]
        if model in models:
            dropdown_update = gr.Dropdown.update(value=model, visible=True)

    state = None
    return (
        state,
        dropdown_update,
        gr.Chatbot.update(visible=True),
        gr.Textbox.update(visible=True),
        gr.Button.update(visible=True),
        gr.Row.update(visible=True),
        gr.Accordion.update(visible=True),
    )


def load_demo(url_params, request: gr.Request):
    logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
    return load_demo_single(models, url_params)


def vote_last_response(state, vote_type, model_selector, request: gr.Request):
    with open(get_conv_log_filename(), "a") as fout:
        data = {
            "tstamp": round(time.time(), 4),
            "type": vote_type,
            "model": model_selector,
            "state": state.dict(),
            "ip": request.client.host,
        }
        fout.write(json.dumps(data) + "\n")


def upvote_last_response(state, model_selector, request: gr.Request):
    logger.info(f"upvote. ip: {request.client.host}")
    vote_last_response(state, "upvote", model_selector, request)
    return ("",) + (disable_btn,) * 3


def downvote_last_response(state, model_selector, request: gr.Request):
    logger.info(f"downvote. ip: {request.client.host}")
    vote_last_response(state, "downvote", model_selector, request)
    return ("",) + (disable_btn,) * 3


def flag_last_response(state, model_selector, request: gr.Request):
    logger.info(f"flag. ip: {request.client.host}")
    vote_last_response(state, "flag", model_selector, request)
    return ("",) + (disable_btn,) * 3


def regenerate(state, request: gr.Request):
    logger.info(f"regenerate. ip: {request.client.host}")
    state.messages[-1][-1] = None
    state.skip_next = False
    return (state, state.to_gradio_chatbot(), "") + (disable_btn,) * 5


def clear_history(request: gr.Request):
    logger.info(f"clear_history. ip: {request.client.host}")
    state = None
    return (state, [], "") + (disable_btn,) * 5


def add_text(state, text, request: gr.Request):
    logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")

    if state is None:
        state = get_conv_template("neural-chat-7b-v2")

    if len(text) <= 0:
        state.skip_next = True
        return (state, state.to_gradio_chatbot(), "") + (no_change_btn,) * 5
    if enable_moderation:
        flagged = violates_moderation(text)
        if flagged:
            logger.info(f"violate moderation. ip: {request.client.host}. text: {text}")
            state.skip_next = True
            return (state, state.to_gradio_chatbot(), moderation_msg) + (
                no_change_btn,
            ) * 5

    text = text[:2560]  # Hard cut-off
    state.append_message(state.roles[0], text)
    state.append_message(state.roles[1], None)
    state.skip_next = False
    return (state, state.to_gradio_chatbot(), "") + (disable_btn,) * 5


def post_process_code(code):
    sep = "\n```"
    if sep in code:
        blocks = code.split(sep)
        if len(blocks) % 2 == 1:
            for i in range(1, len(blocks), 2):
                blocks[i] = blocks[i].replace("\\_", "_")
        code = sep.join(blocks)
    return code


def http_bot(state, model_selector, temperature, max_new_tokens, topk, request: gr.Request):
    logger.info(f"http_bot. ip: {request.client.host}")
    start_tstamp = time.time()
    model_name = model_selector
    temperature = float(temperature)
    max_new_tokens = int(max_new_tokens)
    topk = int(topk)

    if state.skip_next:
        # This generate call is skipped due to invalid inputs
        yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
        return

    if len(state.messages) == state.offset + 2:
        # First round of conversation
        if "Llama-2-7b-chat-hf" in model_name:
            model_name = "llama-2"
        new_state = get_conv_template(model_name.split('/')[-1])
        #new_state.conv_id = uuid.uuid4().hex
        #new_state.model_name = state.model_name or model_selector
        new_state.append_message(new_state.roles[0], state.messages[-2][1])
        new_state.append_message(new_state.roles[1], None)
        state = new_state

    # Construct prompt
    prompt = state.get_prompt()
    # print("prompt==============", prompt)
    skip_echo_len = compute_skip_echo_len(model_name, state, prompt) - 1

    # Make requests
    pload = {
        "prompt": prompt,
        "device": "cpu",
        "temperature": temperature,
        "top_p": 0.95,
        "top_k": topk,
        "repetition_penalty": 1.0,
        "max_new_tokens": max_new_tokens,
        "stream": True,
    }

    logger.info(f"==== request ====\n{pload}")

    start_time = time.time()

    state.messages[-1][-1] = "▌"
    yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5

    try:
        # Stream output
        response = requests.post(
            controller_url + "/v1/chat/completions",
            headers=headers,
            json=pload,
            stream=True,
            timeout=20,
        )
        output = ""
        for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
            if chunk:
                if chunk.strip() == b'data: [DONE]':
                    break
                data = json.loads(chunk.decode())
                # print("data======", data, skip_echo_len)
                if data["error_code"] == 0:
                    output += data["text"].strip() + " "
                    output = post_process_code(output)
                    state.messages[-1][-1] = output + "▌"
                    yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
                else:
                    output = data["text"] + f" (error_code: {data['error_code']})"
                    state.messages[-1][-1] = output
                    yield (state, state.to_gradio_chatbot()) + (
                        disable_btn,
                        disable_btn,
                        disable_btn,
                        enable_btn,
                        enable_btn,
                    )
                    return
                time.sleep(0.005)
    except requests.exceptions.RequestException as e:
        state.messages[-1][-1] = server_error_msg + f" (error_code: 4)"
        yield (state, state.to_gradio_chatbot()) + (
            disable_btn,
            disable_btn,
            disable_btn,
            enable_btn,
            enable_btn,
        )
        return

    finish_tstamp = time.time() - start_time
    elapsed_time = "\n✅generation elapsed time: {}s".format(round(finish_tstamp, 4))

    # elapsed_time =  "\n{}s".format(round(finish_tstamp, 4))
    # elapsed_time =  "<p class='time-style'>{}s </p>".format(round(finish_tstamp, 4))

    # state.messages[-1][-1] = state.messages[-1][-1][:-1] + elapsed_time
    state.messages[-1][-1] = state.messages[-1][-1][:-1]
    yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5

    logger.info(f"{output}")

    with open(get_conv_log_filename(), "a") as fout:
        data = {
            "tstamp": round(finish_tstamp, 4),
            "type": "chat",
            "model": model_name,
            "gen_params": {
                "temperature": temperature,
                "max_new_tokens": max_new_tokens,
                "topk": topk,
            },
            "start": round(start_tstamp, 4),
            "finish": round(start_tstamp, 4),
            "state": state.dict(),
            "ip": request.client.host,
        }
        fout.write(json.dumps(data) + "\n")


block_css = (
    code_highlight_css
    + """
pre {
    white-space: pre-wrap;       /* Since CSS 2.1 */
    white-space: -moz-pre-wrap;  /* Mozilla, since 1999 */
    white-space: -pre-wrap;      /* Opera 4-6 */
    white-space: -o-pre-wrap;    /* Opera 7 */
    word-wrap: break-word;       /* Internet Explorer 5.5+ */
}
#notice_markdown th {
    display: none;
}

#notice_markdown {
    text-align: center;
    background: #2e78c4;
    padding: 1%;
    height: 4.3rem;
    color: #fff !important;
    margin-top: 0;
}

#notice_markdown p{
    color: #fff !important;
}


#notice_markdown h1, #notice_markdown h4 {
    color: #fff;
    margin-top: 0;
}

gradio-app {
    background: linear-gradient(to bottom, #86ccf5, #3273bf) !important;
    padding: 3%;
}

.gradio-container {
    margin: 0 auto !important;
    width: 70% !important;
    padding: 0 !important;
    background: #fff !important;
    border-radius: 5px !important;
}

#chatbot {
    border-style: solid;
    overflow: visible;
    margin: 1% 4%;
    width: 90%;
    box-shadow: 0 15px 15px -5px rgba(0, 0, 0, 0.2);
    border: 1px solid #ddd;
}

#chatbot::before {
    content: "";
    position: absolute;
    top: 0;
    right: 0;
    width: 60px;
    height: 60px;
    background-image: url(https://i.postimg.cc/gJzQTQPd/Microsoft-Teams-image-73.png);
    background-repeat: no-repeat;
    background-position: center center;
    background-size: contain;
}

#chatbot::after {
    content: "";
    position: absolute;
    top: 0;
    right: 60px;
    width: 60px;
    height: 60px;
    background-image: url(https://i.postimg.cc/QCBQ45b4/Microsoft-Teams-image-44.png);
    background-repeat: no-repeat;
    background-position: center center;
    background-size: contain;
}

#chatbot .wrap {
    margin-top: 30px !important;
}


#text-box-style, #btn-style {
    width: 90%;
    margin: 1% 4%;
}


.user, .bot {
    width: 80% !important;

}

.bot {
    white-space: pre-wrap !important;
    line-height: 1.3 !important;
    display: flex;
    flex-direction: column;
    justify-content: flex-start;

}

#btn-send-style {
    background: rgb(0, 180, 50);
    color: #fff;
    }

#btn-list-style {
    background: #eee0;
    border: 1px solid #0053f4;
}

.title {
    font-size: 1.5rem;
    font-weight: 700;
    color: #fff !important;
    display: flex;
    justify-content: center;
}

footer {
    display: none !important;
}

.footer {
    margin-top: 2rem !important;
    text-align: center;
    border-bottom: 1px solid #e5e5e5;
}

.footer>p {
    font-size: .8rem;
    display: inline-block;
    padding: 0 10px;
    transform: translateY(10px);
    background: white;
}

.img-logo {
    width: 3.3rem;
    display: inline-block;
    margin-right: 1rem;
}

.img-logo-style {
    width: 3.5rem;
    float: left;
}

.img-logo-right-style {
    width: 3.5rem;
    display: inline-block !important;
}

.neural-studio-img-style {
     width: 50%;
    height: 20%;
    margin: 0 auto;
}

.acknowledgments {
    margin-bottom: 1rem !important;
    height: 1rem;
}
"""
)


def build_single_model_ui(models):

    notice_markdown = """
<div class="title">
<div style="
    color: #fff;
">Large Language Model <p style="
    font-size: 0.8rem;
">Future Gen Intel® Xeon® (codenamed Granite Rapids) with Intel® AMX</p></div>

</div>
"""
    # <div class="footer">
    #                 <p>Powered by <a href="https://github.com/intel/intel-extension-for-transformers" style="text-decoration: underline;" target="_blank">Intel Extension for Transformers</a> and <a href="https://github.com/intel/intel-extension-for-pytorch" style="text-decoration: underline;" target="_blank">Intel Extension for PyTorch</a>
    #                 <img src='https://i.postimg.cc/Pfv4vV6R/Microsoft-Teams-image-23.png' class='img-logo-right-style'/></p>
    #         </div>
    #         <div class="acknowledgments">
    #         <p></p></div>

    learn_more_markdown =  """<div class="footer">
                    <p>Powered by <a href="https://github.com/intel/intel-extension-for-transformers" style="text-decoration: underline;" target="_blank">Intel Extension for Transformers</a> and <a href="https://github.com/intel/intel-extension-for-pytorch" style="text-decoration: underline;" target="_blank">Intel Extension for PyTorch</a>
                    </p>
            </div>
            <div class="acknowledgments">
            <p></p></div>

        """

    state = gr.State()
    notice = gr.Markdown(notice_markdown, elem_id="notice_markdown")

    with gr.Row(elem_id="model_selector_row", visible=False):
        model_selector = gr.Dropdown(
            choices=models,
            value=models[0] if len(models) > 0 else "",
            interactive=True,
            show_label=False,
        ).style(container=False)

    chatbot = gr.Chatbot(elem_id="chatbot", visible=False).style(height=550)
    with gr.Row(elem_id="text-box-style"):
        with gr.Column(scale=20):
            textbox = gr.Textbox(
                show_label=False,
                placeholder="Enter text and press ENTER",
                visible=False,
            ).style(container=False)
        with gr.Column(scale=1, min_width=50):
            send_btn = gr.Button(value="Send", visible=False, elem_id="btn-send-style")

    with gr.Accordion("Parameters", open=False, visible=False, elem_id="btn-style") as parameter_row:
        temperature = gr.Slider(
            minimum=0.0,
            maximum=1.0,
            value=0.001,
            step=0.1,
            interactive=True,
            label="Temperature",
            visible=False,
        )
        max_output_tokens = gr.Slider(
            minimum=0,
            maximum=1024,
            value=512,
            step=1,
            interactive=True,
            label="Max output tokens",
        )
        topk = gr.Slider(
            minimum=1,
            maximum=10,
            value=1,
            step=1,
            interactive=True,
            label="TOP K",
        )


    with gr.Row(visible=False, elem_id="btn-style") as button_row:
        upvote_btn = gr.Button(value="👍  Upvote", interactive=False, visible=False, elem_id="btn-list-style")
        downvote_btn = gr.Button(value="👎  Downvote", interactive=False, visible=False, elem_id="btn-list-style")
        flag_btn = gr.Button(value="⚠️  Flag", interactive=False, visible=False, elem_id="btn-list-style")
        # stop_btn = gr.Button(value="⏹️  Stop Generation", interactive=False)
        regenerate_btn = gr.Button(value="🔄  Regenerate", interactive=False, elem_id="btn-list-style")
        clear_btn = gr.Button(value="🗑️  Clear history", interactive=False, elem_id="btn-list-style")


    gr.Markdown(learn_more_markdown)

    # Register listeners
    btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
    upvote_btn.click(
        upvote_last_response,
        [state, model_selector],
        [textbox, upvote_btn, downvote_btn, flag_btn],
    )
    downvote_btn.click(
        downvote_last_response,
        [state, model_selector],
        [textbox, upvote_btn, downvote_btn, flag_btn],
    )
    flag_btn.click(
        flag_last_response,
        [state, model_selector],
        [textbox, upvote_btn, downvote_btn, flag_btn],
    )
    regenerate_btn.click(regenerate, state, [state, chatbot, textbox] + btn_list).then(
        http_bot,
        [state, model_selector, temperature, max_output_tokens, topk],
        [state, chatbot] + btn_list,
    )
    clear_btn.click(clear_history, None, [state, chatbot, textbox] + btn_list)

    model_selector.change(clear_history, None, [state, chatbot, textbox] + btn_list)

    textbox.submit(
        add_text, [state, textbox], [state, chatbot, textbox] + btn_list
    ).then(
        http_bot,
        [state, model_selector, temperature, max_output_tokens, topk],
        [state, chatbot] + btn_list,
    )
    send_btn.click(
        add_text, [state, textbox], [state, chatbot, textbox] + btn_list
    ).then(
        http_bot,
        [state, model_selector, temperature, max_output_tokens, topk],
        [state, chatbot] + btn_list,
    )

    return state, model_selector, chatbot, textbox, send_btn, button_row, parameter_row


def build_demo(models):
    with gr.Blocks(
        title="NeuralChat · Intel",
        theme=gr.themes.Base(),
        css=block_css,
    ) as demo:
        url_params = gr.JSON(visible=False)

        (
            state,
            model_selector,
            chatbot,
            textbox,
            send_btn,
            button_row,
            parameter_row,
        ) = build_single_model_ui(models)

        if model_list_mode == "once":
            demo.load(
                load_demo,
                [url_params],
                [
                    state,
                    model_selector,
                    chatbot,
                    textbox,
                    send_btn,
                    button_row,
                    parameter_row,
                ],
                _js=get_window_url_params,
            )
        else:
            raise ValueError(f"Unknown model list mode: {model_list_mode}")

    return demo


if __name__ == "__main__":

    controller_url = "http://198.175.88.97:8000"
    host = "0.0.0.0"

    concurrency_count = 10
    model_list_mode = "once"
    share = False
    moderate = False

    set_global_vars(controller_url, moderate)
    models = get_model_list(controller_url)

    demo = build_demo(models)
    demo.queue(
        concurrency_count=concurrency_count, status_update_rate=10, api_open=False
    ).launch(
        server_name=host, server_port=80, share=share, max_threads=200
    )