File size: 12,560 Bytes
0fcd216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9da9cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f839a97
 
 
 
7ca4a38
 
0fcd216
f839a97
 
 
 
 
 
0fcd216
 
 
24d5b1d
7ca4a38
 
 
 
 
 
 
 
 
 
 
 
0fcd216
9da9cd5
 
 
24d5b1d
9da9cd5
 
 
 
 
 
 
 
 
0fcd216
f839a97
 
 
 
dc9a124
 
8a6de15
f839a97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9da9cd5
 
c0d31bb
9da9cd5
 
 
 
 
 
 
c0d31bb
9da9cd5
7ca4a38
 
0fcd216
 
 
 
 
38e9395
9da9cd5
 
 
38e9395
9da9cd5
 
0fcd216
 
 
9da9cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fcd216
f839a97
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# import re
# import gradio as gr

# import torch
# from transformers import DonutProcessor, VisionEncoderDecoderModel

# processor = DonutProcessor.from_pretrained("pacman2223/univ-docu-model-v3")
# model = VisionEncoderDecoderModel.from_pretrained("pacman2223/univ-docu-model-v3")

# device = "cuda" if torch.cuda.is_available() else "cpu"
# model.to(device)

# def process_document(image, question):
#     # prepare encoder inputs
#     pixel_values = processor(image, return_tensors="pt").pixel_values
    
#     # prepare decoder inputs
#     task_prompt = "{user_input}"
#     prompt = task_prompt.replace("{user_input}", question)
#     decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
          
#     # generate answer
#     outputs = model.generate(
#         pixel_values.to(device),
#         decoder_input_ids=decoder_input_ids.to(device),
#         max_length=model.decoder.config.max_position_embeddings,
#         early_stopping=True,
#         pad_token_id=processor.tokenizer.pad_token_id,
#         eos_token_id=processor.tokenizer.eos_token_id,
#         use_cache=True,
#         num_beams=1,
#         bad_words_ids=[[processor.tokenizer.unk_token_id]],
#         return_dict_in_generate=True,
#     )
    
#     # postprocess
#     sequence = processor.batch_decode(outputs.sequences)[0]
#     sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
#     sequence = re.sub(r"<.*?>", "", sequence, count=1).strip()  # remove first task start token
    
#     return processor.token2json(sequence)

# description = "Gradio Demo for Model-V3, an instance of `VisionEncoderDecoderModel` fine-tuned on DocVQA (document visual question answering). To use it, simply upload your image and type a question and click 'submit', or click one of the examples to load them. Read more at the links below."
# article = "<p style='text-align: center'>Model-V3</p>"

# demo = gr.Interface(
#     fn=process_document,
#     inputs=["image", "text"],
#     outputs="json",
#     title="Demo: Model-V3 for Document Analysis",
#     description=description,
#     article=article,
#     examples=[["example_1.png", "What is the title shown?"], ["example_2.png", "When is mid semester exams?"]],
#     cache_examples=False)

# demo.queue(max_size=5)
# demo.launch()


# import re
# import gradio as gr
# import torch
# from transformers import DonutProcessor, VisionEncoderDecoderModel
# import fitz  # PyMuPDF
# from PIL import Image
# import io

# processor = DonutProcessor.from_pretrained("pacman2223/univ-docu-model-v3")
# model = VisionEncoderDecoderModel.from_pretrained("pacman2223/univ-docu-model-v3")
# device = "cuda" if torch.cuda.is_available() else "cpu"
# model.to(device)

# def pdf_to_images(pdf_file):
#     if pdf_file is None:
#         return None
#     pdf_path = pdf_file.name  # Get the file path
    
#     images = []
#     try:
#         doc = fitz.open(pdf_path)
#         for page in doc:
#             pix = page.get_pixmap()
#             img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
#             images.append(img)
#         return images
#     except Exception as e:
#         print(f"Error converting PDF: {e}")
#         return None

# def process_document(pdf_file, page_number, question):
#     if pdf_file is None:
#         return "Please upload a PDF file."
    
#     images = pdf_to_images(pdf_file)
#     if images is None:
#         return "Failed to process the PDF file."
    
#     if page_number < 1 or page_number > len(images):
#         return f"Invalid page number. The PDF has {len(images)} pages."
    
#     image = images[page_number - 1]
    
#     # prepare encoder inputs
#     pixel_values = processor(image, return_tensors="pt").pixel_values
    
#     # prepare decoder inputs
#     task_prompt = "{user_input}"
#     prompt = task_prompt.replace("{user_input}", question)
#     decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
          
#     # generate answer
#     outputs = model.generate(
#         pixel_values.to(device),
#         decoder_input_ids=decoder_input_ids.to(device),
#         max_length=model.decoder.config.max_position_embeddings,
#         early_stopping=True,
#         pad_token_id=processor.tokenizer.pad_token_id,
#         eos_token_id=processor.tokenizer.eos_token_id,
#         use_cache=True,
#         num_beams=1,
#         bad_words_ids=[[processor.tokenizer.unk_token_id]],
#         return_dict_in_generate=True,
#     )
    
#     # postprocess
#     sequence = processor.batch_decode(outputs.sequences)[0]
#     sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
#     sequence = re.sub(r"<.*?>", "", sequence, count=1).strip()  # remove first task start token
    
#     return processor.token2json(sequence)

# def update_page_preview(pdf_file, page_number):
#     if pdf_file is None:
#         return None
#     images = pdf_to_images(pdf_file)
#     if images is None or page_number < 1 or page_number > len(images):
#         return None
#     return images[page_number - 1]

# # def update_page_slider(pdf_file):
# #     if pdf_file is None:
# #         return gr.Slider(minimum=1, maximum=1, value=1, step=1, label="Page Number")
# #     images = pdf_to_images(pdf_file)
# #     if images is None:
# #         return gr.Slider(minimum=1, maximum=1, value=1, step=1, label="Page Number")
# #     return gr.Slider(minimum=1, maximum=len(images), value=1, step=1, label="Page Number")

# description = "Gradio Demo for Model-V3, an instance of `VisionEncoderDecoderModel` fine-tuned on DocVQA (document visual question answering). To use it, upload a PDF file, select a page number, type a question, and click 'submit'."
# article = "<p style='text-align: center'>Model-V3</p>"

# with gr.Blocks() as demo:
#     gr.Markdown("# Demo: Model-V3 for Document Analysis")
#     gr.Markdown(description)
    
#     with gr.Row():
#         with gr.Column(scale=1):
#             pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
#             page_slider = gr.Slider(minimum=1, maximum=1, value=1, step=1, label="Page Number")
#         with gr.Column(scale=2):
#             page_preview = gr.Image(label="Page Preview")

#     question_input = gr.Textbox(label="Question")
#     submit_button = gr.Button("Submit")
#     output = gr.JSON(label="Output")

#     def update_interface(pdf_file):
#         if pdf_file is None:
#             return gr.Slider(minimum=1, maximum=1, value=1, step=1, label="Page Number"), None
#         images = pdf_to_images(pdf_file)
#         if images is None:
#             return gr.Slider(minimum=1, maximum=1, value=1, step=1, label="Page Number"), None
#         return (
#             gr.Slider(minimum=1, maximum=len(images), value=1, step=1, label="Page Number"),
#             images[0]  # Show the first page by default
#         )
#     pdf_input.change(update_interface, inputs=[pdf_input], outputs=[page_slider, page_preview])
#     page_slider.change(update_page_preview, inputs=[pdf_input, page_slider], outputs=[page_preview])
#     submit_button.click(process_document, inputs=[pdf_input, page_slider, question_input], outputs=[output])

# demo.launch()


import re
import gradio as gr
import torch
from transformers import DonutProcessor, VisionEncoderDecoderModel
import fitz  # PyMuPDF
from PIL import Image
import io

processor = DonutProcessor.from_pretrained("pacman2223/univ-docu-model-v3")
model = VisionEncoderDecoderModel.from_pretrained("pacman2223/univ-docu-model-v3")
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)

def pdf_to_images(pdf_file):
    if pdf_file is None:
        return None
    pdf_path = pdf_file.name  # Get the file path
    
    images = []
    try:
        doc = fitz.open(pdf_path)
        for page in doc:
            pix = page.get_pixmap()
            img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
            images.append(img)
        return images
    except Exception as e:
        print(f"Error converting PDF: {e}")
        return None

def process_document(file, page_number, question, input_type):
    if file is None:
        return "Please upload a file."
    
    if input_type == "PDF":
        images = pdf_to_images(file)
        if images is None:
            return "Failed to process the PDF file."
        if page_number < 1 or page_number > len(images):
            return f"Invalid page number. The PDF has {len(images)} pages."
        image = images[page_number - 1]
    else:  # Image
        image = Image.open(file.name)
    
    # prepare encoder inputs
    pixel_values = processor(image, return_tensors="pt").pixel_values
    
    # prepare decoder inputs
    task_prompt = "{user_input}"
    prompt = task_prompt.replace("{user_input}", question)
    decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
          
    # generate answer
    outputs = model.generate(
        pixel_values.to(device),
        decoder_input_ids=decoder_input_ids.to(device),
        max_length=model.decoder.config.max_position_embeddings,
        early_stopping=True,
        pad_token_id=processor.tokenizer.pad_token_id,
        eos_token_id=processor.tokenizer.eos_token_id,
        use_cache=True,
        num_beams=1,
        bad_words_ids=[[processor.tokenizer.unk_token_id]],
        return_dict_in_generate=True,
    )
    
    # postprocess
    sequence = processor.batch_decode(outputs.sequences)[0]
    sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
    sequence = re.sub(r"<.*?>", "", sequence, count=1).strip()  # remove first task start token
    
    return processor.token2json(sequence)

def update_page_preview(file, page_number, input_type):
    if file is None:
        return None
    if input_type == "PDF":
        images = pdf_to_images(file)
        if images is None or page_number < 1 or page_number > len(images):
            return None
        return images[page_number - 1]
    else:  # Image
        return Image.open(file.name)

description = "Gradio Demo for Model-V3, an instance of `VisionEncoderDecoderModel` fine-tuned on DocVQA (document visual question answering). To use it, upload a PDF or image file, select a page number (for PDF), type a question, and click 'submit'."
article = "<p style='text-align: center'>Model-V3</p>"

with gr.Blocks() as demo:
    gr.Markdown("# Demo: Model-V3 for Document Analysis")
    gr.Markdown(description)
    
    with gr.Row():
        with gr.Column(scale=1):
            input_type = gr.Radio(["PDF", "Image"], label="Input Type", value="PDF")
            file_input = gr.File(label="Upload File")
            page_slider = gr.Slider(minimum=1, maximum=1, value=1, step=1, label="Page Number (PDF only)")
        with gr.Column(scale=2):
            page_preview = gr.Image(label="Page/Image Preview")
    
    question_input = gr.Textbox(label="Question")
    submit_button = gr.Button("Submit")
    output = gr.JSON(label="Output")
    
    def update_interface(file, input_type):
        if file is None:
            return gr.Slider(visible=False, minimum=1, maximum=1, value=1, step=1, label="Page Number (PDF only)"), None
        
        if input_type == "PDF":
            images = pdf_to_images(file)
            if images is None:
                return gr.Slider(visible=False, minimum=1, maximum=1, value=1, step=1, label="Page Number (PDF only)"), None
            return (
                gr.Slider(visible=True, minimum=1, maximum=len(images), value=1, step=1, label="Page Number (PDF only)"),
                images[0]  # Show the first page by default
            )
        else:  # Image
            return gr.Slider(visible=False, minimum=1, maximum=1, value=1, step=1, label="Page Number (PDF only)"), Image.open(file.name)
    
    input_type.change(lambda x: gr.File(label="Upload File", file_types=[".pdf"] if x == "PDF" else ["image/*"]), inputs=[input_type], outputs=[file_input])
    file_input.change(update_interface, inputs=[file_input, input_type], outputs=[page_slider, page_preview])
    page_slider.change(update_page_preview, inputs=[file_input, page_slider, input_type], outputs=[page_preview])
    submit_button.click(process_document, inputs=[file_input, page_slider, question_input, input_type], outputs=[output])

demo.launch()