File size: 8,161 Bytes
899c526
 
 
 
 
 
a8c8616
 
899c526
 
a8c8616
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50081a5
a8c8616
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
899c526
a8c8616
899c526
a8c8616
 
 
 
899c526
a8c8616
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
899c526
a8c8616
 
899c526
a8c8616
 
 
 
 
 
 
 
 
899c526
a8c8616
 
 
 
 
 
 
 
 
 
899c526
a8c8616
 
899c526
a8c8616
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
899c526
 
 
 
 
 
 
 
 
 
 
 
0e99e24
a8c8616
 
 
 
 
 
 
 
 
899c526
 
 
a8c8616
899c526
a8c8616
 
899c526
 
 
 
 
 
 
a8c8616
 
 
899c526
a8c8616
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e99e24
a8c8616
 
 
 
 
 
 
 
 
 
 
 
 
899c526
 
 
 
 
 
0e99e24
a8c8616
899c526
a8c8616
0e99e24
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import gradio as gr

from gradio_rerun import Rerun
import rerun as rr
import rerun.blueprint as rrb
import mmcv
from timeit import default_timer as timer
from typing import Literal

from mini_dpvo.config import cfg as base_cfg
from mini_dpvo.api.inference import (
    log_trajectory,
    calib_from_dust3r,
    create_reader,
    calculate_num_frames,
)

import torch
import numpy as np
from pathlib import Path
from multiprocessing import Process, Queue
from mini_dpvo.dpvo import DPVO
from jaxtyping import UInt8, Float64, Float32
from mini_dust3r.model import AsymmetricCroCo3DStereo
from tqdm import tqdm
import tyro
from dataclasses import dataclass

if gr.NO_RELOAD:
    NETWORK_PATH = "checkpoints/dpvo.pth"
    DEVICE = (
        "mps"
        if torch.backends.mps.is_available()
        else "cuda"
        if torch.cuda.is_available()
        else "cpu"
    )
    MODEL = AsymmetricCroCo3DStereo.from_pretrained(
        "nielsr/DUSt3R_ViTLarge_BaseDecoder_512_dpt"
    ).to(DEVICE)


@dataclass
class GradioDPVOConfig:
    share: bool = False


@rr.thread_local_stream("mini_dpvo")
@torch.no_grad()
def run_dpvo(
    video_file_path: str,
    jpg_quality: str,
    stride: int = 1,
    skip: int = 0,
    config_type: Literal["accurate", "fast"] = "accurate",
    progress=gr.Progress(),
):
    # create a stream to send data back to the rerun viewer
    stream = rr.binary_stream()
    parent_log_path = Path("world")
    rr.log(f"{parent_log_path}", rr.ViewCoordinates.RDF, timeless=True)

    blueprint = rrb.Blueprint(
        collapse_panels=True,
    )

    rr.send_blueprint(blueprint)

    if config_type == "accurate":
        base_cfg.merge_from_file("config/default.yaml")
    elif config_type == "fast":
        base_cfg.merge_from_file("config/fast.yaml")
    else:
        raise ValueError("Invalid config type")
    base_cfg.BUFFER_SIZE = 2048

    slam = None
    start_time = timer()
    queue = Queue(maxsize=8)

    reader: Process = create_reader(video_file_path, None, stride, skip, queue)
    reader.start()

    # get the first frame
    progress(progress=0.1, desc="Estimating Camera Intrinsics")
    _, bgr_hw3, _ = queue.get()
    K_33_pred = calib_from_dust3r(bgr_hw3, MODEL, DEVICE)
    intri_np: Float64[np.ndarray, "4"] = np.array(
        [K_33_pred[0, 0], K_33_pred[1, 1], K_33_pred[0, 2], K_33_pred[1, 2]]
    )

    num_frames = calculate_num_frames(video_file_path, stride, skip)
    path_list = []

    with tqdm(total=num_frames, desc="Processing Frames") as pbar:
        while True:
            timestep: int
            bgr_hw3: UInt8[np.ndarray, "h w 3"]
            intri_np: Float64[np.ndarray, "4"]
            (timestep, bgr_hw3, _) = queue.get()
            # queue will have a (-1, image, intrinsics) tuple when the reader is done
            if timestep < 0:
                break

            rr.set_time_sequence(timeline="timestep", sequence=timestep)

            bgr_3hw: UInt8[torch.Tensor, "h w 3"] = (
                torch.from_numpy(bgr_hw3).permute(2, 0, 1).cuda()
            )
            intri_torch: Float64[torch.Tensor, "4"] = torch.from_numpy(intri_np).cuda()

            if slam is None:
                _, h, w = bgr_3hw.shape
                slam = DPVO(base_cfg, NETWORK_PATH, ht=h, wd=w)

            slam(timestep, bgr_3hw, intri_torch)
            pbar.update(1)

            if slam.is_initialized:
                poses: Float32[torch.Tensor, "buffer_size 7"] = slam.poses_
                points: Float32[torch.Tensor, "buffer_size*num_patches 3"] = (
                    slam.points_
                )
                colors: UInt8[torch.Tensor, "buffer_size num_patches 3"] = slam.colors_
                path_list = log_trajectory(
                    parent_log_path,
                    poses,
                    points,
                    colors,
                    intri_np,
                    bgr_hw3,
                    path_list,
                    jpg_quality,
                )
                yield stream.read(), timer() - start_time


def on_file_upload(video_file_path: str) -> None:
    video_reader = mmcv.VideoReader(video_file_path)
    video_info = f"""
    **Video Info:**
    - Number of Frames: {video_reader.frame_cnt}
    - FPS: {round(video_reader.fps)}
    """
    return video_info


def main(gradio_config: GradioDPVOConfig):
    with gr.Blocks(
        css=""".gradio-container {margin: 0 !important; min-width: 100%};""",
        title="Mini-DPVO Demo",
    ) as demo:
        # scene state is save so that you can change conf_thr, cam_size... without rerunning the inference
        gr.HTML('<h2 style="text-align: center;">Mini-DPVO Demo</h2>')
        gr.HTML(
            '<p style="text-align: center;">Unofficial DPVO demo using the mini-dpvo. Learn more about mini-dpvo <a href="https://github.com/pablovela5620/mini-dpvo">here</a>.</p>'
        )
        with gr.Column():
            with gr.Row():
                video_input = gr.File(
                    height=100,
                    file_count="single",
                    file_types=[".mp4", ".mov", ".MOV", ".webm"],
                    label="Video File",
                )
                with gr.Column():
                    video_info = gr.Markdown(
                        value="""
                    **Video Info:**
                    """
                    )
                    time_taken = gr.Number(
                        label="Time Taken (s)", precision=2, interactive=False
                    )
            with gr.Accordion(label="Advanced", open=False):
                with gr.Row():
                    jpg_quality = gr.Radio(
                        label="JPEG Quality %: Lower quality means faster streaming",
                        choices=[10, 50, 90],
                        value=90,
                        type="value",
                    )
                    stride = gr.Slider(
                        label="Stride: How many frames to sample between each prediction",
                        minimum=1,
                        maximum=5,
                        step=1,
                        value=5,
                    )
                    skip = gr.Number(
                        label="Skip: How many frames to skip at the beginning",
                        value=0,
                        precision=0,
                    )
                    config_type = gr.Dropdown(
                        label="Config Type: Choose between accurate and fast",
                        value="fast",
                        choices=["accurate", "fast"],
                        max_choices=1,
                    )
            with gr.Row():
                start_btn = gr.Button("Run")
                stop_btn = gr.Button("Stop")
            rr_viewer = Rerun(height=600, streaming=True)

            # Example videos
            base_example_params = [50, 4, 0, "fast"]
            example_dpvo_dir = Path("data/movies")
            example_iphone_dir = Path("data/iphone")
            example_video_paths = sorted(example_iphone_dir.glob("*.MOV")) + sorted(
                example_dpvo_dir.glob("*.MOV")
            )
            example_video_paths = [str(path) for path in example_video_paths]

            gr.Examples(
                examples=[[path, *base_example_params] for path in example_video_paths],
                inputs=[video_input, jpg_quality, stride, skip, config_type],
                outputs=[rr_viewer],
                fn=run_dpvo,
                cache_examples=False,
            )

            click_event = start_btn.click(
                fn=run_dpvo,
                inputs=[video_input, jpg_quality, stride, skip, config_type],
                outputs=[rr_viewer, time_taken],
            )

            stop_btn.click(
                fn=None,
                inputs=[],
                outputs=[],
                cancels=[click_event],
            )

            video_input.upload(
                fn=on_file_upload, inputs=[video_input], outputs=[video_info]
            )

    demo.launch(share=gradio_config.share)


if __name__ == "__main__":
    main(tyro.cli(GradioDPVOConfig))