Spaces:
Sleeping
Sleeping
File size: 6,787 Bytes
899c526 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
#ifndef SE3_HEADER
#define SE3_HEADER
#include <stdio.h>
#include <Eigen/Dense>
#include <Eigen/Geometry>
#include "common.h"
#include "so3.h"
template <typename Scalar>
class SE3 {
public:
const static int constexpr K = 6; // manifold dimension
const static int constexpr N = 7; // embedding dimension
using Vector3 = Eigen::Matrix<Scalar,3,1>;
using Vector4 = Eigen::Matrix<Scalar,4,1>;
using Matrix3 = Eigen::Matrix<Scalar,3,3>;
using Tangent = Eigen::Matrix<Scalar,K,1>;
using Point = Eigen::Matrix<Scalar,3,1>;
using Point4 = Eigen::Matrix<Scalar,4,1>;
using Data = Eigen::Matrix<Scalar,N,1>;
using Transformation = Eigen::Matrix<Scalar,4,4>;
using Adjoint = Eigen::Matrix<Scalar,K,K>;
EIGEN_DEVICE_FUNC SE3() { translation = Vector3::Zero(); }
EIGEN_DEVICE_FUNC SE3(SO3<Scalar> const& so3, Vector3 const& t) : so3(so3), translation(t) {};
EIGEN_DEVICE_FUNC SE3(const Scalar *data) : translation(data), so3(data+3) {};
EIGEN_DEVICE_FUNC SE3<Scalar> inv() {
return SE3(so3.inv(), -(so3.inv()*translation));
}
EIGEN_DEVICE_FUNC Data data() const {
Data data_vec; data_vec << translation, so3.data();
return data_vec;
}
EIGEN_DEVICE_FUNC SE3<Scalar> operator*(SE3<Scalar> const& other) {
return SE3(so3 * other.so3, translation + so3 * other.translation);
}
EIGEN_DEVICE_FUNC Point operator*(Point const& p) const {
return so3 * p + translation;
}
EIGEN_DEVICE_FUNC Point4 act4(Point4 const& p) const {
Point4 p1; p1 << so3 * p.template segment<3>(0) + translation * p(3), p(3);
return p1;
}
EIGEN_DEVICE_FUNC Adjoint Adj() const {
Matrix3 R = so3.Matrix();
Matrix3 tx = SO3<Scalar>::hat(translation);
Matrix3 Zer = Matrix3::Zero();
Adjoint Ad;
Ad << R, tx*R, Zer, R;
return Ad;
}
EIGEN_DEVICE_FUNC Transformation Matrix() const {
Transformation T = Transformation::Identity();
T.template block<3,3>(0,0) = so3.Matrix();
T.template block<3,1>(0,3) = translation;
return T;
}
EIGEN_DEVICE_FUNC Transformation Matrix4x4() const {
return Matrix();
}
EIGEN_DEVICE_FUNC Tangent Adj(Tangent const& a) const {
return Adj() * a;
}
EIGEN_DEVICE_FUNC Tangent AdjT(Tangent const& a) const {
return Adj().transpose() * a;
}
EIGEN_DEVICE_FUNC static Transformation hat(Tangent const& tau_phi) {
Vector3 tau = tau_phi.template segment<3>(0);
Vector3 phi = tau_phi.template segment<3>(3);
Transformation TauPhi = Transformation::Zero();
TauPhi.template block<3,3>(0,0) = SO3<Scalar>::hat(phi);
TauPhi.template block<3,1>(0,3) = tau;
return TauPhi;
}
EIGEN_DEVICE_FUNC static Adjoint adj(Tangent const& tau_phi) {
Vector3 tau = tau_phi.template segment<3>(0);
Vector3 phi = tau_phi.template segment<3>(3);
Matrix3 Tau = SO3<Scalar>::hat(tau);
Matrix3 Phi = SO3<Scalar>::hat(phi);
Matrix3 Zer = Matrix3::Zero();
Adjoint ad;
ad << Phi, Tau, Zer, Phi;
return ad;
}
EIGEN_DEVICE_FUNC Eigen::Matrix<Scalar,7,7> orthogonal_projector() const {
// jacobian action on a point
Eigen::Matrix<Scalar,7,7> J = Eigen::Matrix<Scalar,7,7>::Zero();
J.template block<3,3>(0,0) = Matrix3::Identity();
J.template block<3,3>(0,3) = SO3<Scalar>::hat(-translation);
J.template block<4,4>(3,3) = so3.orthogonal_projector();
return J;
}
EIGEN_DEVICE_FUNC Tangent Log() const {
Vector3 phi = so3.Log();
Matrix3 Vinv = SO3<Scalar>::left_jacobian_inverse(phi);
Tangent tau_phi;
tau_phi << Vinv * translation, phi;
return tau_phi;
}
EIGEN_DEVICE_FUNC static SE3<Scalar> Exp(Tangent const& tau_phi) {
Vector3 tau = tau_phi.template segment<3>(0);
Vector3 phi = tau_phi.template segment<3>(3);
SO3<Scalar> so3 = SO3<Scalar>::Exp(phi);
Vector3 t = SO3<Scalar>::left_jacobian(phi) * tau;
return SE3<Scalar>(so3, t);
}
EIGEN_DEVICE_FUNC static Matrix3 calcQ(Tangent const& tau_phi) {
// Q matrix
Vector3 tau = tau_phi.template segment<3>(0);
Vector3 phi = tau_phi.template segment<3>(3);
Matrix3 Tau = SO3<Scalar>::hat(tau);
Matrix3 Phi = SO3<Scalar>::hat(phi);
Scalar theta = phi.norm();
Scalar theta_pow2 = theta * theta;
Scalar theta_pow4 = theta_pow2 * theta_pow2;
Scalar coef1 = (theta < EPS) ?
Scalar(1.0/6.0) - Scalar(1.0/120.0) * theta_pow2 :
(theta - sin(theta)) / (theta_pow2 * theta);
Scalar coef2 = (theta < EPS) ?
Scalar(1.0/24.0) - Scalar(1.0/720.0) * theta_pow2 :
(theta_pow2 + 2*cos(theta) - 2) / (2 * theta_pow4);
Scalar coef3 = (theta < EPS) ?
Scalar(1.0/120.0) - Scalar(1.0/2520.0) * theta_pow2 :
(2*theta - 3*sin(theta) + theta*cos(theta)) / (2 * theta_pow4 * theta);
Matrix3 Q = Scalar(0.5) * Tau +
coef1 * (Phi*Tau + Tau*Phi + Phi*Tau*Phi) +
coef2 * (Phi*Phi*Tau + Tau*Phi*Phi - 3*Phi*Tau*Phi) +
coef3 * (Phi*Tau*Phi*Phi + Phi*Phi*Tau*Phi);
return Q;
}
EIGEN_DEVICE_FUNC static Adjoint left_jacobian(Tangent const& tau_phi) {
// left jacobian
Vector3 phi = tau_phi.template segment<3>(3);
Matrix3 J = SO3<Scalar>::left_jacobian(phi);
Matrix3 Q = SE3<Scalar>::calcQ(tau_phi);
Matrix3 Zer = Matrix3::Zero();
Adjoint J6x6;
J6x6 << J, Q, Zer, J;
return J6x6;
}
EIGEN_DEVICE_FUNC static Adjoint left_jacobian_inverse(Tangent const& tau_phi) {
// left jacobian inverse
Vector3 tau = tau_phi.template segment<3>(0);
Vector3 phi = tau_phi.template segment<3>(3);
Matrix3 Jinv = SO3<Scalar>::left_jacobian_inverse(phi);
Matrix3 Q = SE3<Scalar>::calcQ(tau_phi);
Matrix3 Zer = Matrix3::Zero();
Adjoint J6x6;
J6x6 << Jinv, -Jinv * Q * Jinv, Zer, Jinv;
return J6x6;
}
EIGEN_DEVICE_FUNC static Eigen::Matrix<Scalar,3,6> act_jacobian(Point const& p) {
// jacobian action on a point
Eigen::Matrix<Scalar,3,6> J;
J.template block<3,3>(0,0) = Matrix3::Identity();
J.template block<3,3>(0,3) = SO3<Scalar>::hat(-p);
return J;
}
EIGEN_DEVICE_FUNC static Eigen::Matrix<Scalar,4,6> act4_jacobian(Point4 const& p) {
// jacobian action on a point
Eigen::Matrix<Scalar,4,6> J = Eigen::Matrix<Scalar,4,6>::Zero();
J.template block<3,3>(0,0) = p(3) * Matrix3::Identity();
J.template block<3,3>(0,3) = SO3<Scalar>::hat(-p.template segment<3>(0));
return J;
}
private:
SO3<Scalar> so3;
Vector3 translation;
};
#endif
|