File size: 13,866 Bytes
899c526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8c8616
899c526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
import torch
import numpy as np
import torch.nn.functional as F

from . import fastba
from . import altcorr
from . import lietorch
from .lietorch import SE3

from .net import VONet

from .utils import Timer, flatmeshgrid
from . import projective_ops as pops

autocast = torch.cuda.amp.autocast
Id = SE3.Identity(1, device="cuda")


class DPVO:
    def __init__(self, cfg, network, ht=480, wd=640):
        self.cfg = cfg
        self.load_weights(network)
        self.is_initialized = False
        self.enable_timing = False

        self.n = 0  # number of frames
        self.m = 0  # number of patches
        self.M = self.cfg.PATCHES_PER_FRAME
        self.N = self.cfg.BUFFER_SIZE

        self.ht = ht  # image height
        self.wd = wd  # image width

        DIM = self.DIM
        RES = self.RES

        ### state attributes ###
        self.tlist = []
        self.counter = 0

        # dummy image for visualization
        self.image_ = torch.zeros(self.ht, self.wd, 3, dtype=torch.uint8, device="cpu")

        self.tstamps_ = torch.zeros(self.N, dtype=torch.float64, device="cuda")
        self.poses_ = torch.zeros(self.N, 7, dtype=torch.float32, device="cuda")
        self.patches_ = torch.zeros(
            self.N, self.M, 3, self.P, self.P, dtype=torch.float, device="cuda"
        )
        self.intrinsics_ = torch.zeros(self.N, 4, dtype=torch.float, device="cuda")

        self.points_ = torch.zeros(self.N * self.M, 3, dtype=torch.float, device="cuda")
        self.colors_ = torch.zeros(self.N, self.M, 3, dtype=torch.uint8, device="cuda")

        self.index_ = torch.zeros(self.N, self.M, dtype=torch.long, device="cuda")
        self.index_map_ = torch.zeros(self.N, dtype=torch.long, device="cuda")

        ### network attributes ###
        self.mem = 32

        if self.cfg.MIXED_PRECISION:
            self.kwargs = kwargs = {"device": "cuda", "dtype": torch.half}
        else:
            self.kwargs = kwargs = {"device": "cuda", "dtype": torch.float}

        self.imap_ = torch.zeros(self.mem, self.M, DIM, **kwargs)
        self.gmap_ = torch.zeros(self.mem, self.M, 128, self.P, self.P, **kwargs)

        ht = ht // RES
        wd = wd // RES

        self.fmap1_ = torch.zeros(1, self.mem, 128, ht // 1, wd // 1, **kwargs)
        self.fmap2_ = torch.zeros(1, self.mem, 128, ht // 4, wd // 4, **kwargs)

        # feature pyramid
        self.pyramid = (self.fmap1_, self.fmap2_)

        self.net = torch.zeros(1, 0, DIM, **kwargs)
        self.ii = torch.as_tensor([], dtype=torch.long, device="cuda")
        self.jj = torch.as_tensor([], dtype=torch.long, device="cuda")
        self.kk = torch.as_tensor([], dtype=torch.long, device="cuda")

        # initialize poses to identity matrix
        self.poses_[:, 6] = 1.0

        # store relative poses for removed frames
        self.delta = {}

    def load_weights(self, network):
        # load network from checkpoint file
        if isinstance(network, str):
            from collections import OrderedDict

            state_dict = torch.load(network)
            new_state_dict = OrderedDict()
            for k, v in state_dict.items():
                if "update.lmbda" not in k:
                    new_state_dict[k.replace("module.", "")] = v

            self.network = VONet()
            self.network.load_state_dict(new_state_dict)

        else:
            self.network = network

        # steal network attributes
        self.DIM = self.network.DIM
        self.RES = self.network.RES
        self.P = self.network.P

        self.network.cuda()
        self.network.eval()

        # if self.cfg.MIXED_PRECISION:
        #     self.network.half()

    @property
    def poses(self):
        return self.poses_.view(1, self.N, 7)

    @property
    def patches(self):
        return self.patches_.view(1, self.N * self.M, 3, 3, 3)

    @property
    def intrinsics(self):
        return self.intrinsics_.view(1, self.N, 4)

    @property
    def ix(self):
        return self.index_.view(-1)

    @property
    def imap(self):
        return self.imap_.view(1, self.mem * self.M, self.DIM)

    @property
    def gmap(self):
        return self.gmap_.view(1, self.mem * self.M, 128, 3, 3)

    def get_pose(self, t):
        if t in self.traj:
            return SE3(self.traj[t])

        t0, dP = self.delta[t]
        return dP * self.get_pose(t0)

    def terminate(self):
        """interpolate missing poses"""
        print("Terminating...")
        self.traj = {}
        for i in range(self.n):
            current_t: int = self.tstamps_[i].item()
            self.traj[current_t] = self.poses_[i]

        poses = [self.get_pose(t) for t in range(self.counter)]
        poses = lietorch.stack(poses, dim=0)
        poses = poses.inv().data.cpu().numpy()
        tstamps = np.array(self.tlist, dtype=np.float64)
        print("Done!")

        return poses, tstamps

    def corr(self, coords, indicies=None):
        """local correlation volume"""
        ii, jj = indicies if indicies is not None else (self.kk, self.jj)
        ii1 = ii % (self.M * self.mem)
        jj1 = jj % (self.mem)
        corr1 = altcorr.corr(self.gmap, self.pyramid[0], coords / 1, ii1, jj1, 3)
        corr2 = altcorr.corr(self.gmap, self.pyramid[1], coords / 4, ii1, jj1, 3)
        return torch.stack([corr1, corr2], -1).view(1, len(ii), -1)

    def reproject(self, indicies=None):
        """reproject patch k from i -> j"""
        (ii, jj, kk) = indicies if indicies is not None else (self.ii, self.jj, self.kk)
        coords = pops.transform(
            SE3(self.poses), self.patches, self.intrinsics, ii, jj, kk
        )
        return coords.permute(0, 1, 4, 2, 3).contiguous()

    def append_factors(self, ii, jj):
        self.jj = torch.cat([self.jj, jj])
        self.kk = torch.cat([self.kk, ii])
        self.ii = torch.cat([self.ii, self.ix[ii]])

        net = torch.zeros(1, len(ii), self.DIM, **self.kwargs)
        self.net = torch.cat([self.net, net], dim=1)

    def remove_factors(self, m):
        self.ii = self.ii[~m]
        self.jj = self.jj[~m]
        self.kk = self.kk[~m]
        self.net = self.net[:, ~m]

    def motion_probe(self):
        """kinda hacky way to ensure enough motion for initialization"""
        kk = torch.arange(self.m - self.M, self.m, device="cuda")
        jj = self.n * torch.ones_like(kk)
        ii = self.ix[kk]

        net = torch.zeros(1, len(ii), self.DIM, **self.kwargs)
        coords = self.reproject(indicies=(ii, jj, kk))

        with autocast(enabled=self.cfg.MIXED_PRECISION):
            corr = self.corr(coords, indicies=(kk, jj))
            ctx = self.imap[:, kk % (self.M * self.mem)]
            net, (delta, weight, _) = self.network.update(
                net, ctx, corr, None, ii, jj, kk
            )

        return torch.quantile(delta.norm(dim=-1).float(), 0.5)

    def motionmag(self, i, j):
        k = (self.ii == i) & (self.jj == j)
        ii = self.ii[k]
        jj = self.jj[k]
        kk = self.kk[k]

        flow = pops.flow_mag(
            SE3(self.poses), self.patches, self.intrinsics, ii, jj, kk, beta=0.5
        )
        return flow.mean().item()

    def keyframe(self):
        i = self.n - self.cfg.KEYFRAME_INDEX - 1
        j = self.n - self.cfg.KEYFRAME_INDEX + 1
        m = self.motionmag(i, j) + self.motionmag(j, i)

        if m / 2 < self.cfg.KEYFRAME_THRESH:
            k = self.n - self.cfg.KEYFRAME_INDEX
            t0 = self.tstamps_[k - 1].item()
            t1 = self.tstamps_[k].item()

            dP = SE3(self.poses_[k]) * SE3(self.poses_[k - 1]).inv()
            self.delta[t1] = (t0, dP)

            to_remove = (self.ii == k) | (self.jj == k)
            self.remove_factors(to_remove)

            self.kk[self.ii > k] -= self.M
            self.ii[self.ii > k] -= 1
            self.jj[self.jj > k] -= 1

            for i in range(k, self.n - 1):
                self.tstamps_[i] = self.tstamps_[i + 1]
                self.colors_[i] = self.colors_[i + 1]
                self.poses_[i] = self.poses_[i + 1]
                self.patches_[i] = self.patches_[i + 1]
                self.intrinsics_[i] = self.intrinsics_[i + 1]

                self.imap_[i % self.mem] = self.imap_[(i + 1) % self.mem]
                self.gmap_[i % self.mem] = self.gmap_[(i + 1) % self.mem]
                self.fmap1_[0, i % self.mem] = self.fmap1_[0, (i + 1) % self.mem]
                self.fmap2_[0, i % self.mem] = self.fmap2_[0, (i + 1) % self.mem]

            self.n -= 1
            self.m -= self.M

        to_remove = self.ix[self.kk] < self.n - self.cfg.REMOVAL_WINDOW
        self.remove_factors(to_remove)

    def update(self):
        with Timer("other", enabled=self.enable_timing):
            coords = self.reproject()

            with autocast(enabled=True):
                corr = self.corr(coords)
                ctx = self.imap[:, self.kk % (self.M * self.mem)]
                self.net, (delta, weight, _) = self.network.update(
                    self.net, ctx, corr, None, self.ii, self.jj, self.kk
                )

            lmbda = torch.as_tensor([1e-4], device="cuda")
            weight = weight.float()
            target = coords[..., self.P // 2, self.P // 2] + delta.float()

        with Timer("BA", enabled=self.enable_timing):
            t0 = self.n - self.cfg.OPTIMIZATION_WINDOW if self.is_initialized else 1
            t0 = max(t0, 1)

            try:
                fastba.BA(
                    self.poses,
                    self.patches,
                    self.intrinsics,
                    target,
                    weight,
                    lmbda,
                    self.ii,
                    self.jj,
                    self.kk,
                    t0,
                    self.n,
                    2,
                )
            except:
                print("Warning BA failed...")

            points = pops.point_cloud(
                SE3(self.poses),
                self.patches[:, : self.m],
                self.intrinsics,
                self.ix[: self.m],
            )
            points = (points[..., 1, 1, :3] / points[..., 1, 1, 3:]).reshape(-1, 3)
            self.points_[: len(points)] = points[:]

    def __edges_all(self):
        return flatmeshgrid(
            torch.arange(0, self.m, device="cuda"),
            torch.arange(0, self.n, device="cuda"),
            indexing="ij",
        )

    def __edges_forw(self):
        r = self.cfg.PATCH_LIFETIME
        t0 = self.M * max((self.n - r), 0)
        t1 = self.M * max((self.n - 1), 0)
        return flatmeshgrid(
            torch.arange(t0, t1, device="cuda"),
            torch.arange(self.n - 1, self.n, device="cuda"),
            indexing="ij",
        )

    def __edges_back(self):
        r = self.cfg.PATCH_LIFETIME
        t0 = self.M * max((self.n - 1), 0)
        t1 = self.M * max((self.n - 0), 0)
        return flatmeshgrid(
            torch.arange(t0, t1, device="cuda"),
            torch.arange(max(self.n - r, 0), self.n, device="cuda"),
            indexing="ij",
        )

    def __call__(self, tstamp: int, image, intrinsics) -> None:
        """track new frame"""

        if (self.n + 1) >= self.N:
            raise Exception(
                f'The buffer size is too small. You can increase it using "--buffer {self.N*2}"'
            )

        image = 2 * (image[None, None] / 255.0) - 0.5

        with autocast(enabled=self.cfg.MIXED_PRECISION):
            fmap, gmap, imap, patches, _, clr = self.network.patchify(
                image,
                patches_per_image=self.cfg.PATCHES_PER_FRAME,
                gradient_bias=self.cfg.GRADIENT_BIAS,
                return_color=True,
            )

        ### update state attributes ###
        self.tlist.append(tstamp)
        self.tstamps_[self.n] = self.counter
        self.intrinsics_[self.n] = intrinsics / self.RES

        # color info for visualization
        clr = (clr[0, :, [2, 1, 0]] + 0.5) * (255.0 / 2)
        self.colors_[self.n] = clr.to(torch.uint8)

        self.index_[self.n + 1] = self.n + 1
        self.index_map_[self.n + 1] = self.m + self.M

        if self.n > 1:
            if self.cfg.MOTION_MODEL == "DAMPED_LINEAR":
                P1 = SE3(self.poses_[self.n - 1])
                P2 = SE3(self.poses_[self.n - 2])

                xi = self.cfg.MOTION_DAMPING * (P1 * P2.inv()).log()
                tvec_qvec = (SE3.exp(xi) * P1).data
                self.poses_[self.n] = tvec_qvec
            else:
                tvec_qvec = self.poses[self.n - 1]
                self.poses_[self.n] = tvec_qvec

        # TODO better depth initialization
        patches[:, :, 2] = torch.rand_like(patches[:, :, 2, 0, 0, None, None])
        if self.is_initialized:
            s = torch.median(self.patches_[self.n - 3 : self.n, :, 2])
            patches[:, :, 2] = s

        self.patches_[self.n] = patches

        ### update network attributes ###
        self.imap_[self.n % self.mem] = imap.squeeze()
        self.gmap_[self.n % self.mem] = gmap.squeeze()
        self.fmap1_[:, self.n % self.mem] = F.avg_pool2d(fmap[0], 1, 1)
        self.fmap2_[:, self.n % self.mem] = F.avg_pool2d(fmap[0], 4, 4)

        self.counter += 1
        if self.n > 0 and not self.is_initialized:
            if self.motion_probe() < 2.0:
                self.delta[self.counter - 1] = (self.counter - 2, Id[0])
                return

        self.n += 1
        self.m += self.M

        # relative pose
        self.append_factors(*self.__edges_forw())
        self.append_factors(*self.__edges_back())

        if self.n == 8 and not self.is_initialized:
            self.is_initialized = True

            for itr in range(12):
                self.update()

        elif self.is_initialized:
            self.update()
            self.keyframe()