File size: 9,711 Bytes
a63d2a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import tempfile

import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel

from diffusers import DDPMScheduler, UNet2DConditionModel
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.pipelines.deepfloyd_if import IFWatermarker
from diffusers.utils.testing_utils import torch_device

from ..test_pipelines_common import to_np


# WARN: the hf-internal-testing/tiny-random-t5 text encoder has some non-determinism in the `save_load` tests.


class IFPipelineTesterMixin:
    def _get_dummy_components(self):
        torch.manual_seed(0)
        text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")

        torch.manual_seed(0)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            sample_size=32,
            layers_per_block=1,
            block_out_channels=[32, 64],
            down_block_types=[
                "ResnetDownsampleBlock2D",
                "SimpleCrossAttnDownBlock2D",
            ],
            mid_block_type="UNetMidBlock2DSimpleCrossAttn",
            up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"],
            in_channels=3,
            out_channels=6,
            cross_attention_dim=32,
            encoder_hid_dim=32,
            attention_head_dim=8,
            addition_embed_type="text",
            addition_embed_type_num_heads=2,
            cross_attention_norm="group_norm",
            resnet_time_scale_shift="scale_shift",
            act_fn="gelu",
        )
        unet.set_attn_processor(AttnAddedKVProcessor())  # For reproducibility tests

        torch.manual_seed(0)
        scheduler = DDPMScheduler(
            num_train_timesteps=1000,
            beta_schedule="squaredcos_cap_v2",
            beta_start=0.0001,
            beta_end=0.02,
            thresholding=True,
            dynamic_thresholding_ratio=0.95,
            sample_max_value=1.0,
            prediction_type="epsilon",
            variance_type="learned_range",
        )

        torch.manual_seed(0)
        watermarker = IFWatermarker()

        return {
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "unet": unet,
            "scheduler": scheduler,
            "watermarker": watermarker,
            "safety_checker": None,
            "feature_extractor": None,
        }

    def _get_superresolution_dummy_components(self):
        torch.manual_seed(0)
        text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")

        torch.manual_seed(0)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            sample_size=32,
            layers_per_block=[1, 2],
            block_out_channels=[32, 64],
            down_block_types=[
                "ResnetDownsampleBlock2D",
                "SimpleCrossAttnDownBlock2D",
            ],
            mid_block_type="UNetMidBlock2DSimpleCrossAttn",
            up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"],
            in_channels=6,
            out_channels=6,
            cross_attention_dim=32,
            encoder_hid_dim=32,
            attention_head_dim=8,
            addition_embed_type="text",
            addition_embed_type_num_heads=2,
            cross_attention_norm="group_norm",
            resnet_time_scale_shift="scale_shift",
            act_fn="gelu",
            class_embed_type="timestep",
            mid_block_scale_factor=1.414,
            time_embedding_act_fn="gelu",
            time_embedding_dim=32,
        )
        unet.set_attn_processor(AttnAddedKVProcessor())  # For reproducibility tests

        torch.manual_seed(0)
        scheduler = DDPMScheduler(
            num_train_timesteps=1000,
            beta_schedule="squaredcos_cap_v2",
            beta_start=0.0001,
            beta_end=0.02,
            thresholding=True,
            dynamic_thresholding_ratio=0.95,
            sample_max_value=1.0,
            prediction_type="epsilon",
            variance_type="learned_range",
        )

        torch.manual_seed(0)
        image_noising_scheduler = DDPMScheduler(
            num_train_timesteps=1000,
            beta_schedule="squaredcos_cap_v2",
            beta_start=0.0001,
            beta_end=0.02,
        )

        torch.manual_seed(0)
        watermarker = IFWatermarker()

        return {
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "unet": unet,
            "scheduler": scheduler,
            "image_noising_scheduler": image_noising_scheduler,
            "watermarker": watermarker,
            "safety_checker": None,
            "feature_extractor": None,
        }

    # this test is modified from the base class because if pipelines set the text encoder
    # as optional with the intention that the user is allowed to encode the prompt once
    # and then pass the embeddings directly to the pipeline. The base class test uses
    # the unmodified arguments from `self.get_dummy_inputs` which will pass the unencoded
    # prompt to the pipeline when the text encoder is set to None, throwing an error.
    # So we make the test reflect the intended usage of setting the text encoder to None.
    def _test_save_load_optional_components(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        prompt = inputs["prompt"]
        generator = inputs["generator"]
        num_inference_steps = inputs["num_inference_steps"]
        output_type = inputs["output_type"]

        if "image" in inputs:
            image = inputs["image"]
        else:
            image = None

        if "mask_image" in inputs:
            mask_image = inputs["mask_image"]
        else:
            mask_image = None

        if "original_image" in inputs:
            original_image = inputs["original_image"]
        else:
            original_image = None

        prompt_embeds, negative_prompt_embeds = pipe.encode_prompt(prompt)

        # inputs with prompt converted to embeddings
        inputs = {
            "prompt_embeds": prompt_embeds,
            "negative_prompt_embeds": negative_prompt_embeds,
            "generator": generator,
            "num_inference_steps": num_inference_steps,
            "output_type": output_type,
        }

        if image is not None:
            inputs["image"] = image

        if mask_image is not None:
            inputs["mask_image"] = mask_image

        if original_image is not None:
            inputs["original_image"] = original_image

        # set all optional components to None
        for optional_component in pipe._optional_components:
            setattr(pipe, optional_component, None)

        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor())  # For reproducibility tests

        for optional_component in pipe._optional_components:
            self.assertTrue(
                getattr(pipe_loaded, optional_component) is None,
                f"`{optional_component}` did not stay set to None after loading.",
            )

        inputs = self.get_dummy_inputs(torch_device)

        generator = inputs["generator"]
        num_inference_steps = inputs["num_inference_steps"]
        output_type = inputs["output_type"]

        # inputs with prompt converted to embeddings
        inputs = {
            "prompt_embeds": prompt_embeds,
            "negative_prompt_embeds": negative_prompt_embeds,
            "generator": generator,
            "num_inference_steps": num_inference_steps,
            "output_type": output_type,
        }

        if image is not None:
            inputs["image"] = image

        if mask_image is not None:
            inputs["mask_image"] = mask_image

        if original_image is not None:
            inputs["original_image"] = original_image

        output_loaded = pipe_loaded(**inputs)[0]

        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
        self.assertLess(max_diff, 1e-4)

    # Modified from `PipelineTesterMixin` to set the attn processor as it's not serialized.
    # This should be handled in the base test and then this method can be removed.
    def _test_save_load_local(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor())  # For reproducibility tests

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs)[0]

        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
        self.assertLess(max_diff, 1e-4)